シリーズ 情報科学における確率モデル7<br> システム信頼性の数理

個数:1
紙書籍版価格
¥4,400
  • 電子書籍
  • ポイントキャンペーン

シリーズ 情報科学における確率モデル7
システム信頼性の数理

  • 著者名:大鑄史男
  • 価格 ¥4,400(本体¥4,000)
  • コロナ社(2021/05発売)
  • GW前半スタート!Kinoppy 電子書籍・電子洋書 全点ポイント30倍キャンペーン(~4/29)
  • ポイント 1,200pt (実際に付与されるポイントはご注文内容確認画面でご確認下さい)
  • ISBN:9784339028379

ファイル: /

内容説明

信頼性工学の基盤をなす2状態単調システムから多状態システムに至るまでの議論を,システムの順序構造と確率的なエージング性との関係を基軸にしながら概観する。また,システムの構成要素の重要度について計算の観点から解説する。

目次

1.順序集合論の準備と記号
1.1 順序集合,全順序集合
 1.1.1 順序集合
 1.1.2 擬順序集合
 1.1.3 直積順序集合
 1.1.4 ハッセ図
1.2 極大元,最大元,極小限,最小元
1.3 上側単調集合と下側単調集合
1.4 上限と下限
 1.4.1 上限と下限の定義
 1.4.2 束
1.5 単調増加関数
1.6 アソシエイトな確率
1.7 状態ベクトルに対する操作と記号

2.2状態システム
2.1 構造関数
 2.1.1 2状態システムの定義
 2.1.2 コヒーレントシステムの例
 2.1.3 構造関数と直列,並列システム
 2.1.4 双対システム
2.2 極小パスベクトル,極小カットベクトル
 2.2.1 極小パスベクトルと極小カットベクトルの定義
 2.2.2 単調構造関数の直・並列表現と並・直列表現
2.3 モジュール分解
 2.3.1 モジュール
 2.3.2 極小カットベクトル,極小パスベクトルとモジュール分解
2.4 システムの信頼性の計算
 2.4.1 システムの信頼性
 2.4.2 包除原理
 2.4.3 排反積和法
 2.4.4 信頼度関数とブール変数による期待値計算
 2.4.5 k-out-of-n:Gシステムの信頼度によるシステム信頼度の凸表現
 2.4.6 信頼度関数のS形
2.5 システム信頼度の上界と下界
 2.5.1 極小パスおよびカットベクトルによるシステム信頼度の上界と下界
 2.5.2 モジュール分解によるシステム信頼度の上界と下界

3.2状態システムの劣化過程
3.1 寿命分布関数
 3.1.1 寿命分布
 3.1.2 バスタブ曲線
 3.1.3 寿命分布のパラメーター族
 3.1.4 ポアソン過程
3.2 エージングによる寿命分布関数のクラス分類
 3.2.1 エージング
 3.2.2 IFR分布と指数分布
 3.2.3 IFRA分布と指数分布
3.3 コヒーレントシステムの寿命分布
 3.3.1 コヒーレントシステムの寿命分布の上界と下界
 3.3.2 コヒーレントシステムと閉包性
3.4 エージングとシステムの構造
 3.4.1 指数分布とコヒーレントシステムの構造
 3.4.2 IFR分布とコヒーレントシステムの構造
 3.4.3 IFRA分布とコヒーレントシステム
3.5 エージング性の和に関する保存性
3.6 再生過程
 3.6.1 定義と再生回数の分布
 3.6.2 再生関数M(t)=E[N(t)]
3.7 ショックモデル
 3.7.1 ポアソンショックモデルのエージング性
 3.7.2 累積損傷臨界モデル
 3.7.3 一変量ショックモデルの拡張
 3.7.4 二変量ショックモデル
3.8 多変量エージングと正の相関
 3.8.1 多変量エージング
 3.8.2 境界分布
 3.8.3 二変量アーラン分布のNBU性とIFRA性
 3.8.4 多変量エージングの定義について
 3.8.5 正の相関性

4.多状態システム
4.1 多状態システムの定義
4.2 直列システムと並列システム
4.3 k-out-of-n:Gシステム
 4.3.1 内包されるシステム
 4.3.2 k-out-of-n:Gシステムの定義と性質
4.4 モジュール分解

5.多状態システムの確率的評価と劣化過程
5.1 多状態システムの確率的評価
 5.1.1 多状態システムの信頼性評価方法
 5.1.2 モジュール分解によるシステムの信頼性評価
 5.1.3 モジュール分解による上界と下界の計算
 5.1.4 数値例
5.2 多状態システムの劣化過程
 5.2.1 IFRA閉包定理とNBU閉包定理
 5.2.2 多状態システムのハザード変換
 5.2.3 IFRA過程とNBU過程

6.2状態システムにおける重要度
6.1 Birnbaum重要度
 6.1.1 臨界状態ベクトル
 6.1.2 臨界状態ベクトルを求めるためのアルゴリズム
 6.1.3 Birnbaum重要度
6.2 臨界重要度
6.3 狭義臨界重要度
6.4 Fussell-Vesley重要度
6.5 いくつかの例
6.6 モジュール分解を介した重要度の計算
6.7 直・並列システムにおける重要度の計算
 6.7.1 直・並列システムにおけるBirnbaum重要度
 6.7.2 直・並列システムにおける臨界重要度
 6.7.3 直・並列システムにおけるFussell-Vesely重要度
 6.7.4 Birnbaum,臨界およびFussell-Vesely重要度における大小関係の間の整合性
 6.7.5 直・並列システムにおける狭義臨界重要度
6.8 Barlow-Proschan重要度
 6.8.1 Barlow-Proschan重要度―修理を考慮しない場合―
 6.8.2 平均をとる場合―修理を考慮しない場合―
 6.8.3 Barlow-Proschan重要度―部品ごとに修理人が存在する場合―
 6.8.4 故障頻度とBirnbaum重要度

7.多状態システムにおける重要度
7.1 多状態臨界状態ベクトル
7.2 多状態Birnbaum重要度
7.3 多状態Birnbaum重要度とモジュール分解
7.4 多状態臨界重要度
 7.4.1 多状態臨界重要度の定義
 7.4.2 モジュール分解と臨界重要度との関係
7.5 多状態Barlow-Proschan重要度
 7.5.1 確率過程{Xi(t),t>=0}と保全
 7.5.2 時点重要度
 7.5.3 多状態Barlow-Proschan重要度―保全を考慮しない場合―
 7.5.4 平均をとる場合―保全を考慮しない場合―
 7.5.5 多状態Barlow-Proschan重要度―保全を考慮する場合―
7.6 二つの部品と修理人―人の場合の重要度について―

8.多状態システムの拡張―あとがきにかえて―
8.1 状態空間の順序構造
8.2 ネットワークとしての状態空間

引用・参考文献
索引