Real Algebraic Geometry and Optimization (Graduate Studies in Mathematics)

個数:

Real Algebraic Geometry and Optimization (Graduate Studies in Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 271 p.
  • 言語 ENG
  • 商品コード 9781470476366
  • DDC分類 516.35

Full Description

This book provides a comprehensive and user-friendly exploration of the tremendous recent developments that reveal the connections between real algebraic geometry and optimization, two subjects that were usually taught separately until the beginning of the 21st century. Real algebraic geometry studies the solutions of polynomial equations and polynomial inequalities over the real numbers. Real algebraic problems arise in many applications, including science and engineering, computer vision, robotics, and game theory. Optimization is concerned with minimizing or maximizing a given objective function over a feasible set. Presenting key ideas from classical and modern concepts in real algebraic geometry, this book develops related convex optimization techniques for polynomial optimization. The connection to optimization invites a computational view on real algebraic geometry and opens doors to applications. Intended as an introduction for students of mathematics or related fields at an advanced undergraduate or graduate level, this book serves as a valuable resource for researchers and practitioners. Each chapter is complemented by a collection of beneficial exercises, notes on references, and further reading. As a prerequisite, only some undergraduate algebra is required.

Contents

Foundations
Univariate real polynomials
From polyhedra to semialgebraic sets
The Tarski-Sidenberg principle and elimination of quantifiers
Cylindrical algebraic decomposition
Linear, semidefinite, and conic optimization
Positive polynomials, sums of suares and convexity
Positive polynomials
Polynomial optimization
Spectrahedra
Outlook
Stable and hyperbolic polynomials
Relative entropy methods in semialgebraic optimzation
Background material
Notation
Bibliography
Index

最近チェックした商品