- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
Advanced Field-Effect Transistors: Theory and Applications offers a fresh perspective on the design and analysis of advanced field-effect transistor (FET) devices and their applications. The text emphasizes both fundamental and new paradigms that are essential for upcoming advancement in the field of transistors beyond complementary metal-oxide-semiconductors (CMOS). This book uses lucid, intuitive language to gradually increase the comprehension of readers about the key concepts of FETs, including their theory and applications.
In order to improve readers' learning opportunities, Advanced Field-Effect Transistors: Theory and Applications presents a wide range of crucial topics:
Design and challenges in tunneling FETs
Various modeling approaches for FETs
Study of organic thin-film transistors
Biosensing applications of FETs
Implementation of memory and logic gates with FETs
The advent of low-power semiconductor devices and related implications for upcoming technology nodes provide valuable insight into low-power devices and their applicability in wireless, biosensing, and circuit aspects. As a result, researchers are constantly looking for new semiconductor devices to meet consumer demand. This book gives more details about all aspects of the low-power technology, including ongoing and prospective circumstances with fundamentals of FET devices as well as sophisticated low-power applications.
Contents
1. Future Prospective beyond CMOS Technology: From Silicon-based devices to alternate devices. 2. Design and Challenges in Tunnel FET. 3. Modelling Approaches to Field Effect Transistor. 4. Dynamics of Trap States in Organic Thin-Film Transistors (OTFT's). 5. An Insightful Study and Investigation of Tunnel FET and its Application in the Biosensing Domain. 6. Optimization of Hetero buried Oxide Pocket doped Gate engineered Tunnel FET structure. 7. Comprehensive Analysis of NC-L-TFET. 8. Thermal Behavior of Si-doped MoS2 based Step Structure DG-TFET. 9. Implementation of Logic gates using Step-Channel TFET. 10. CMOS-based SRAM with Odd Transistors Configuration: An Extensive Study. 11. Gate-All-Around Nanosheet FET device simulation methodology using Sentaurus TCAD. 12. Device Simulation process on TCAD