Soft Computing Techniques for Type-2 Diabetes Data Classification

個数:
電子版価格
¥12,161
  • 電子版あり

Soft Computing Techniques for Type-2 Diabetes Data Classification

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 168 p.
  • 言語 ENG
  • 商品コード 9780367236540
  • DDC分類 616.46240028563

Full Description

Diabetes Mellitus (DM, commonly referred to as diabetes, is a metabolic disorder in which there are high blood sugar levels over a prolonged period. Lack of sufficient insulin causes presence of excess sugar levels in the blood. As a result the glucose levels in diabetic patients are more than normal ones. It has symptoms like frequent urination, increased hunger, increase thirst and high blood sugar. There are mainly three types of diabetes namely type-1, type-2 and gestational diabetes. Type-1 DM occurs due to immune system mistakenly attacks and destroys the beta-cells and Type-2 DM occurs due to insulin resistance. Gestational DM occurs in women during pregnancy due to insulin blocking by pregnancy harmones. Among these three types of DM, type-2 DM is more prevalence, and impacting so many millions of people across the world. Classification and predictive systems are actually reliable in the health care sector to explore hidden patterns in the patients data. These systems aid, medical professionals to enhance their diagnosis, prognosis along with remedy organizing techniques. The less percentage of improvement in classifier predictive accuracy is very important for medical diagnosis purposes where mistakes can cause a lot of damage to patient's life. Hence, we need a more accurate classification system for prediction of type-2 DM. Although, most of the above classification algorithms are efficient, they failed to provide good accuracy with low computational cost. In this book, we proposed various classification algorithms using soft computing techniques like Neural Networks (NNs), Fuzzy Systems (FS) and Swarm Intelligence (SI). The experimental results demonstrate that these algorithms are able to produce high classification accuracy at less computational cost. The contributions presented in this book shall attempt to address the following objectives using soft computing approaches for identification of diabetes mellitus.




Introuducing an optimized RBFN model called Opt-RBFN.



Designing a cost effective rule miner called SM-RuleMiner for type-2 diabetes diagnosis.



Generating more interpretable fuzzy rules for accurate diagnosis of type2 diabetes using RST-BatMiner.



Developing accurate cascade ensemble frameworks called Diabetes-Network for type-2 diabetes diagnosis.



Proposing a Multi-level ensemble framework called Dia-Net for improving the classification accuracy of type-2 diabetes diagnosis.



Designing an Intelligent Diabetes Risk score Model called Intelli-DRM estimate the severity of Diabetes mellitus.

This book serves as a reference book for scientific investigators who need to analyze disease data and/or numerical data, as well as researchers developing methodology in soft computing field. It may also be used as a textbook for a graduate and post graduate level course in machine learning or soft computing.

Contents

Preface
Author Bio
Introduction
Literature Survey
Classifcation of Type-2 Diabetes using CVI based RBFN
Classifcation of Type-2 Diabetes using Spider Monkey Crisp Rule Miner
Classifcation of Type-2 Diabetes using Bat based Fuzzy Rule Miner
Classifcation of Type-2 Diabetes using Dual-Stage Cascade Network
Classifcation of Type-2 Diabetes using Bi-Level Ensemble Network
Intelli-DRM: An Intelligent Computational Model for Fore-casting Severity of Diabetes Mellitus
Conclusion and Future Research
Bibliography

最近チェックした商品