PRICAI 2024: Trends in Artificial Intelligence : 21st Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, Kyoto, Japan, November 18-24, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2025)

個数:

PRICAI 2024: Trends in Artificial Intelligence : 21st Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, Kyoto, Japan, November 18-24, 2024, Proceedings, Part I (Lecture Notes in Computer Science) (2025)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 489 p.
  • 言語 ENG
  • 商品コード 9789819601158

Full Description

The five-volume proceedings set LNAI 15281-15285, constitutes the refereed proceedings of the 21st Pacific Rim International Conference on Artificial Intelligence, PRICAI 2024, held in Kyoto, Japan, in November 18-24, 2024.

The 145 full papers and 35 short papers included in this book were carefully reviewed and selected from 543 submissions. 

The papers are organized in the following topical sections:

Part I: Machine Learning, Deep Learning

Part II: Deep Learning, Federated Learning, Generative AI, Natural Language Processing, Large Language Models, 

Part III: Large Language Models, Computer Vision

Part IV: Computer Vision, Autonomous Driving, Agents and Multiagent Systems, Knowledge Graphs, Speech Processing, Optimization

Part V: Optimization, General Applications, Medical Applications, Theoretical Foundations of AI

Contents

.- Machine Learning.

.- Quantitative Analysis of Training Methods, Data Size, and User-Specific Effectiveness in DL-Based Personalized Aesthetic Evaluation.

.- EQUISCALE: Equitable Scaling for Abstention Learning.

.- Unsupervised Clustering Using a Variational Autoencoder with Constrained Mixtures for Posterior and Prior.

.- UTBoost: Gradient Boosted Decision Trees for Uplift Modeling.

.- CodeMosaic Patch: Physical Adversarial Attacks Against Infrared Aerial Object Detectors.

.- Sequential Clustering for Real-world Datasets.

.- Dual-mode Contrastive Learning-Enhanced Knowledge Tracing.

.- Leveraging Information Consistency in Frequency and Spatial Domain for Adversarial Attacks.

.- Characterization of Similarity Metrics in Epistemic Logic.

.- A Relaxed Symmetric Non-negative Matrix Factorization Approach for Community Discovery.

.- Enhanced Cognitive Distortions Detection and Classification through Data Augmentation Techniques.

.- Enhancing Music Genre Classification using Augmented Features Ensemble Learning Technique.

.- A Multi-Layer Network Community Detection Method via Network Feature Augmentation and Contrastive Learning.

.- Scene Text Recognition Based on Corner Point and Attention Mechanism.

.- A Comprehensive Framework for Debiased Sample Selection across All Noise Types.

.- A Traffic Flow Prediction Model Integrating Dynamic Implicit Graph Information.

.- A Recursive Learning Algorithm for the Least Squares SVM.

.- BDEL: A Backdoor Attack Defense Method Based on Ensemble Learning.

.- Customizing Spatial-Temporal Graph Mamba Networks for Pandemic Forecasting.

.- Distribution-aligned Sequential Counterfactual Explanation with Local Outlier Factor.

.- T-FIA: Temporal-Frequency Interactive Attention Network for Long-term Time Series Forecasting.

.- Multi-modal Food Recommendation using Clustering andSelf-supervised Learning.

.- A quality assessment method of few-shot datasets based on the fusion of quantity and quality.

.- Deep Learning.

.- CSDCNet: A Semantic Segmentation Network for Tubular Structures.

.- Neural Network Surrogate based on Binary Classification for Assisting Genetic Programming in Searching Scheduling Heuristic.

.- HN-Darts:Hybrid Network Differentiable Architecture Search for Industrial Scenarios.

High-Order Structure Enhanced Graph Clustering.

.- CAFGO: Confidence-Adaptive Factor Graph Optimization Algorithm for Fusion Localization.

.- MFNAS: Multi-Fidelity Exploration in Neural Architecture Search with Stable Zero-shot Proxy.

.- DyAGL: A Dynamic-aware Adaptive Graph Learning Network for Next POI Recommendation.

.- Acoustic classification of bird species using improved pre-trained models.

.- Aspect Term Extraction via Dynamic Attention and a Densely Connected Graph Convolutional Network.

.- NLDF: Neural Light Dynamic Fields for 3D Talking Head Generation.

.- Enhanced Knowledge Tracing via Frequency Integration and Order Sensitivity.

.- Position-Aware Dynamic Graph Convolutional Recurrent Network for Traffic Forecasting.

.- Pose Preserving Landmark Guided Neural Radiation Fields for Talking Portrait Synthesis.

.- Adaptive Optimisation of PyTorch Memory Pools for DNNs.

.- Detaching Range from Depth: Personalized Recommendation Meets Personalized PageRank.

.- Context-Aware Structural Adaptive Graph Neural Networks.

.- multi-GAT: Integrative Analysis of scRNA-seq and scATAC-seq Data Using Graph Attention Networks for Cell Annotation.

最近チェックした商品