Statistische Ein-Klassen-Signalbewertung mit akustischen Datenbasen selbstbeschreibender Daten (Studientexte zur Sprachkommunikation; Bd. 63) (2012. 112 S. 240 mm)

個数:

Statistische Ein-Klassen-Signalbewertung mit akustischen Datenbasen selbstbeschreibender Daten (Studientexte zur Sprachkommunikation; Bd. 63) (2012. 112 S. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783942710916

Description


(Text)
Diese Dissertation beschreibt die Möglichkeit mit Methoden der statistischen Vektorfolgenklassifikation eine akustische Ein-Klassen-Signalbewertung durchzuführen, die z.B. im Bereich der Maschinendiagnostik zur Zustandsüberwachung beweglicher Bauteile eingesetzt werden kann. Der Wunsch zur Verwendung einer einzigen Klasse resultiert daraus, dass viele Anwendungen akustische Signale nur von einem Betriebszustand in ausreichender Menge für dessen statistische Beschreibung bereitstellen können. Es wird gezeigt, dass aus diesen akustischen Signalen Merkmale gewonnen werden können, die die statistische Modellierung der einzigen Klasse ermöglichen. Für unbekannte akustische Signale liefert das vorgestellte Verfahren einen Ähnlichkeitswert, der Auskunft über die Zugehörigkeit zur modellierten Klasse gibt. Die Modellierung der Klassen erfolgt mit mehrdimensionalen Verteilungsdichtefunktionen, die aus einer Vielzahl von akustischen Signalen geschätzt werden müssen. Zur benutzerfreundlichen Verwaltung dieser Signale liefert die Arbeit einen Ansatz zur Beschreibung jedes Signal als Objekt, welchem alle Eigenschaften direkt zugeordnet sind. Dazu wurden allgemeine Strukturbeschreibungen für selbstbeschreibende Dokumente defi niert, die alle für ein akustisches Signal vorhandenen Informationen enthalten und dabei eine automatisch verarbeitbare Struktur besitzen. Durch die Selbstbeschreibung, der in den ausgetauschten Dokumenten enthaltenen Daten, kann es nicht zu Fehlinterpretationen kommen. Dies ist besonders beim Austausch zwischen verschiedenen Signalverarbeitungsmodulen wichtig. Für den Benutzer ergibt sich der Vorteil, dass die Daten allzeit les- und interpretierbar bleiben. Durch die Verwendung der Standardtechnologien XML, DTD und XSLT können die Daten außerdem in verschiedenste Zielformate konvertiert werden und so einen schnelleren Überblick über die vorhandenen Daten eines akustischen Signals bieten. Durch die konsequent Anwendung des Ansatzes, wird im Ergebnis eine akustische Datenbasis selbstbeschreibender Daten aufgebaut.
(Author portrait)
Sören Wittenberg studierte von 2000 bis 2006 Informationssystemtechnik an der Technischen Universität Dresden. Seit seinem Abschluss als Diplomingenieur arbeitet er als wissenschaftlicher Mitarbeiter an der Faktultät Elektrotechnik und Informationstechnik, Professur Systemtheorie und Sprachtechnologie der Technischen Universität Dresden. Schwerpunkte seiner Arbeit sind die Forschung auf dem Gebiet der akustischen Mustererkennung nichtsprachlicher Signale und der Lehre der akustischen Mustererkennung und Spracherkennung.

最近チェックした商品