Medium Modifications of Mesons : Chiral Symmetry Restoration, in-medium QCD Sum Rules for D and B mesons, and Bethe-Salpeter equations (2013. 300 S. 220 mm)

個数:

Medium Modifications of Mesons : Chiral Symmetry Restoration, in-medium QCD Sum Rules for D and B mesons, and Bethe-Salpeter equations (2013. 300 S. 220 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p.
  • 商品コード 9783838136271

Description


(Text)
The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for various heavy-light pseudoscalar mesons embedded in cold nuclear matter are evaluated, the impact of order parameters is investigated and Weinberg type sum rules are derived. The consequences of a chirally symmetric scenario for the rho meson are investigated and the complementarity of mass shift and broadening is discussed. Additionally, the analytic structure of quark propagators in the complex plane is investigated numerically within Dyson-Schwinger equations. The applicability of Bethe-Salpter equations for heavy-light quark-antiquark bound states in the scalar and pseudo-scalar channels by variation of the momentum partitioning parameter is presented. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase are used to investigate the hadron spectrum with explicit but without dynamical chiral symmetry breaking. An exhaustive introduction to chiral transformations within classical and quantum field theory and current-current correlators is given.
(Author portrait)
Hilger, ThomasIn 2008 he received his Diploma in Physics from the Technical University Dresden. There he also obtained his Ph.D. in Theoretical Physics in 2012. He has been working at the Helmholtz-Zentrum Dresden-Rossendorf and went several times to the Joint Institute for Nuclear Research to establish a collaboration with focus on Dyson-Schwinger equations.
(Author portrait)
In 2008 he received his Diploma in Physics from the Technical University Dresden. There he also obtained his Ph.D. in Theoretical Physics in 2012. He has been working at the Helmholtz-Zentrum Dresden-Rossendorf and went several times to the Joint Institute for Nuclear Research to establish a collaboration with focus on Dyson-Schwinger equations.

最近チェックした商品