現代代数と数学構造の起源(第2版)<br>Modern Algebra and the Rise of Mathematical Structures (2nd rev. ed. 2004. 451 p.)

個数:

現代代数と数学構造の起源(第2版)
Modern Algebra and the Rise of Mathematical Structures (2nd rev. ed. 2004. 451 p.)

  • 提携先の海外書籍取次会社に在庫がございます。通常約3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 451 p.
  • 商品コード 9783764370022

Full Description


This book describes two stages in the historical development of the notion of mathematical structures: first, it traces its rise in the context of algebra from the mid-1800s to 1930, and then considers attempts to formulate elaborate theories after 1930 aimed at elucidating, from a purely mathematical perspective, the precise meaning of this idea.

Contents

Introductionof Mathematics.- 1 Structures in Algebra: Changing Images.- 1.1 Jordan and Hoelder: Two Versions of a Theorem.- 1.2 Heinrich Weber:Lehrbuch der Algebra.- 1.3 Bartel L. van der Waerden:Moderne Algebra.- 1.4 Other Textbooks of Algebra in the 1920s.- 2 Richard Dedekind: Numbers and Ideals.- 2.1 Lectures on Galois Theory.- 2.1 Algebraic Number Theory.- 2.2.1 Ideal Prime Numbers.- 2.2.2 Theory of Ideals: The First Version (1871).- 2.2.3 Later Versions.- 2.2.4 The Last Version.- 2.2.5 Additional Contexts.- 2.3 Ideals andDualgruppen.- 2.4 Dedekind and the Structural Image of Algebra.- 3 David Hilbert: Algebra and Axiomatics.- 3.1 Algebraic Invariants.- 3.2 Algebraic Number Theory.- 3.2 Hilbert's Axiomatic Approach.- 3.4 Hilbert and the Structural Image of Algebra.- 3.5 Postulational Analysis in the USA.- 4 Concrete and Abstract: Numbers, Polynomials, Rings.- 4.1 Kurt Hensel: Theory ofp-adicNumbers.- 4.2 Ernst Steinitz:Algebraische Theorie der Koerper.- 4.3 Alfred Loewy:Lehrbuch der Algebra.- 4.4 Abraham Fraenkel: Axioms forp-adicSystems.- 4.5 Abraham Fraenkel: Abstract Theory of Rings.- 4.6 Ideals and Abstract Rings after Fraenkel.- 4.7 Polynomials and their Decompositions.- 5 Emmy Noether: Ideals and Structures.- 5.1 Early Works.- 5,2Idealtheorie in Ringbereichen.- 5.3Abstrakter Aufbau der Idealtheorie.- 5.4 Later Works.- 5.5 Emmy Noether and the Structural Image of Algebra.- Two: Structures in the Body of Mathematics.- 6 Oystein Ore: Algebraic Structures.- 6.1 Decomposition Theorems and Algebraic Structures.- 6.2 Non-Commutative Polynomials and Algebraic Structure.- 6.3 Structures and Lattices.- 6.4 Structures in Action.- 6.5 Universal Algebra, Model Theory, Boolean Algebras.- 6.6 Ore's Structures and the Structural Image of Algebra.- 7 Nicolas Bourbaki: Theory ofStructures.- 7.1 The Myth.- 7.2 Structures and Mathematics.- 7.3Structuresand the Body of Mathematics.- 7.3.1 Set Theory.- 7.3.2 Algebra.- 7.3.3 General Topology.- 7.3.4 Commutative Algebra.- 7.4Structuresand the Structural Image of Mathematics.- 8 Category Theory: Early Stages.- 8.1 Category Theory: Basic Concepts.- 8.2 Category Theory: A Theory of Structures.- 8.3 Category Theory: Early Works.- 8.4 Category Theory: Some Contributions.- 8.5 Category Theory and Bourbaki.- 9 Categories and Images of Mathematics.- 9.1 Categories and the Structural Image of Mathematics.- 9.2 Categories and the Essence of Mathematics.- 9.3 What is Algebra and what has it been in History?.- Author Index.