Riemannsche Zahlensphäre und Möbius-Transformationen (2024. xxi, 149 S. XXI, 149 S. 46 Abb., 21 Abb. in Farbe. 235 mm)

個数:

Riemannsche Zahlensphäre und Möbius-Transformationen (2024. xxi, 149 S. XXI, 149 S. 46 Abb., 21 Abb. in Farbe. 235 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783662694206

Full Description

In diesem Buch wird der Punkt Unendlich zum Greifen nahe! Mit seiner berühmten Zahlenkugel fand Riemann eine Darstellung, in die der „unendlich ferne Punkt" völlig gleichberechtigt zu den Punkten steht, die durch endliche Zahlenwerte beschrieben werden. Neben der Konstruktionsanleitung dieser Kugel widmen wir uns ausführlich den topologischen Grundlagen der erweiterten komplexen Ebene und den Eigenschaften der stereographischen Projektion. Zudem wird der Bezug zu einem wichtigen Abbildungstypen der Funktionentheorie hergestellt: den Möbius-Transformationen. Möbius-Transformationen bilden die Automorphismen der erweiterten Ebene und kommen beispielsweise in der speziellen Relativitätstheorie und der Elektrotechnik („Smith-Diagramm") zur Anwendung.

Die als Lehrskript verfasste Lektüre umfasst das Fundament für das Verständnis beider Themen und beleuchtet ihre Verbindung. Sie enthält den ausführlich ausgearbeiteten Beweis zum berühmten YouTube-Video „Möbius Transformations Revealed" (2008) von Arnold und Rogness und richtet sich an Interessierte der Mathematik, die bereits mit den Grundlagen der reellen Analysis, linearen Algebra und Differentialgeometrie vertraut sind.

 

Der Autor

Maximilian Wiecha studierte an der TU Braunschweig Chemie und Mathematik auf gymnasiales Lehramt. Im Laufe seines Studiums vertiefte er beide Fachrichtungen und beschäftigte sich u. a. mit der selektiven Synthese unsymmetrischer Diboran(IV)-Derivate. Neben seiner Leidenschaft für anorganische und physikalische Chemie, gehören die höhere Mathematik. Sein Interesse liegt auf Forschung und universitärer Lehre.

Contents

Historisches und Vorwort.- Komplexe Zahlen.- Die Riemannsche Zahlenkugel.- Möbius-Transformationen.- Bewegungen der Zahlensphäre.- Schulbezug.- Zusammenfassung und Ausblick.- Anhang.

最近チェックした商品