Mit harmonischen Verhältnissen zu Kegelschnitten : Perlen der klassischen Geometrie (2ND)

個数:

Mit harmonischen Verhältnissen zu Kegelschnitten : Perlen der klassischen Geometrie (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 248 p.
  • 言語 GER
  • 商品コード 9783662633298

Full Description

Dieses Lehrbuch nimmt Sie mit auf eine Entdeckungsreise durch die Welt der klassischen Geometrie: Beginnend beim Satz von Thales und den Apolloniuskreisen führt die Reise über Steiner'sche Kreisketten bis in die Welt der Kegelschnitte. Dabei werden verborgene Zusammenhänge aufgedeckt und Perlen der Elementargeometrie präsentiert. Hierbei werden Sie durch harmonische Verhältnisse geleitet, welche eine zentrale Rolle spielen und sich wie ein roter Faden durch das ganze Buch ziehen.

Einerseits ist dieses Buch für alle Liebhaberinnen und Liebhaber der Geometrie geschrieben, andererseits ist es durch die leicht zugängliche Theorie und die kurzen Beweise besonders auch für Schülerinnen und Schüler der Sekundarstufe sowie Lehramtsstudierende geeignet.

Die zweite Auflage des Buches enthält neu Lösungen und Hinweise zu allen Aufgaben.  Zusätzlich wurde ein Abschnitt über die Zyklographie eingefügt. Diese heute fast in Vergessenheit geratene Abbildung erlaubt eine verblüffend einfache und elementare Lösung des Apollonischen Berührungsproblems. Die ebenfalls neuen Abschnitte über trilineare Koordinaten und das Ceva- und das Anti-Ceva-Dreieck ermöglichen einen Ausblick in die moderne Dreiecksgeometrie.

Contents

Einleitung.- Peripheriewinkelsatz.- Sehnen, Sekanten und Chordalen.- Harmonische Geradenbüschel.- Harmonische Punkte am Kreis.- Ein Apollonisches Berührungsproblem.- Inversion am Kreis.- Kegelschnitte.- Kleinodien.- Anhang A: Zentrische Streckung und Strahlensätze.- Anhang B: Lösungen und Hinweise.- Literaturverzeichnis.- Index.

最近チェックした商品