離散非線形シュレーディンガー方程式<br>The Discrete Nonlinear Schrödinger Equation : Mathematical Analysis, Numerical Computations and Physical Perspectives (Springer Tracts in Modern Physics) 〈Vol. 232〉

個数:

離散非線形シュレーディンガー方程式
The Discrete Nonlinear Schrödinger Equation : Mathematical Analysis, Numerical Computations and Physical Perspectives (Springer Tracts in Modern Physics) 〈Vol. 232〉

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 415 p./サイズ 175 illus., 20 in color
  • 言語 ENG
  • 商品コード 9783540891987
  • DDC分類 530

Full Description

Adventures of nonlinear science were perhaps most notably seeded at the Los Alamos National Laboratory (LANL) over half a century ago with the fundamental questionsofenergyequipartitioninnonlinearsystems, astheywereposedbyFermi, Pasta, and Ulam. At the time, probably little could be imagined of the far-reaching implications that the studies of nonlinear phenomena would have, continuing to expandtothisday.TheGinzburg-Landautheoryofsuperconductivityandtheord- parameter descriptions of super uidity, the "soliton revolution" through the works of Zabusky and Kruskal on the KdV equation and the subsequent widespread - plicationsof the nonlinear Schrodi .. ngerequation in optical bers and Bose-Einstein condensates,the developmentsof bifurcationtheory and chaotic dynamicsand their widespread applicationsfrom climate and geophysics,to biological phenomenaand chemical kineticsare only a few of the multiple arenas in which nonlineardynamics have emerged as the appropriate description of important physical systems.
I well remember my own early days of nonlinear science appreciation, rst at Cornell University in the early 1970s and then at Los Alamos where we began the Center for Nonlinear Studies (CNLS) in 1980. These were years marked by interdisciplinary discovery and by the recognition that many nonlinear equations have an inherent ability to exhibit both coherence and chaos - the beginnings of our appreciation today of spatio-temporal complexity and the functional role that this plays in multiple branches of science, technology, and engineering.

Contents

I Dimensions and Components.- General Introduction and Derivation of the DNLS Equation.- The One-Dimensional Case.- The Two-Dimensional Case.- The Three-Dimensional Case.- The Defocusing Case.- Extended Solutions and Modulational Instability.- MultiComponent DNLS Equations.- II Special Topics.- Experimental Results Related to DNLS Equations.- Numerical Methods for DNLS.- The Dynamics of Unstable Waves.- A Map Approach to Stationary Solutions of the DNLS Equation.- Formation of Localized Modes in DNLS.- Few-Lattice-Site Systems of Discrete Self-Trapping Equations.- Surface Waves and Boundary Effects in DNLS Equations.- Discrete Nonlinear Schr#x00F6;dinger Equations with Time-Dependent Coefficients ( of Lattice Solitons).- Exceptional Discretizations of the NLS: Exact Solutions and Conservation Laws.- Solitary Wave Collisions.- Related Models.- DNLS with Impurities.- Statistical Mechanics of DNLS.- Traveling Solitary Waves in DNLS Equations.- Decay and Strichartz Estimates for DNLS.

最近チェックした商品