Number Theoretic Methods in Cryptography : Complexity lower bounds (Progress in Computer Science and Applied Logic)

個数:

Number Theoretic Methods in Cryptography : Complexity lower bounds (Progress in Computer Science and Applied Logic)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 182 p.
  • 言語 ENG
  • 商品コード 9783034897235
  • DDC分類 510

Full Description

The book introduces new techniques which imply rigorous lower bounds on the complexity of some number theoretic and cryptographic problems. These methods and techniques are based on bounds of character sums and numbers of solutions of some polynomial equations over finite fields and residue rings. It also contains a number of open problems and proposals for further research. We obtain several lower bounds, exponential in terms of logp, on the de­ grees and orders of • polynomials; • algebraic functions; • Boolean functions; • linear recurring sequences; coinciding with values of the discrete logarithm modulo a prime p at suf­ ficiently many points (the number of points can be as small as pI/He). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the right­ most bit of the discrete logarithm and defines whether the argument is a quadratic residue. We also obtain non-trivial upper bounds on the de­ gree, sensitivity and Fourier coefficients of Boolean functions on bits of x deciding whether x is a quadratic residue. These results are used to obtain lower bounds on the parallel arithmetic and Boolean complexity of computing the discrete logarithm. For example, we prove that any unbounded fan-in Boolean circuit. of sublogarithmic depth computing the discrete logarithm modulo p must be of superpolynomial size.

Contents

I Preliminaries.- 1 Introduction.- 2 Basic Notation and Definitions.- 3 Auxiliary Results.- II Approximation and Complexity of the Discrete Logarithm.- 4 Approximation of the Discrete Logarithm Modulo p.- 5 Approximation of the Discrete Logarithm Modulo p — 1.- 6 Approximation of the Discrete Logarithm by Boolean Functions.- 7 Approximation of the Discrete Logarithm by Real and Complex Polynomials.- III Complexity of Breaking the Diffie-Hellman Cryptosystem.- 8 Polynomial Approximation and Arithmetic Complexity of the Diffie-Hellman Key.- 9 Boolean Complexity of the Diffie-Hellman Key.- IV Other Applications.- 10 Trade-off between the Boolean and Arithmetic Depths of Modulo p Functions.- 11 Special Polynomials and Boolean Functions.- 12 RSA and Blum-Blum-Shub Generators of Pseudo-Random Numbers.- V Concluding Remarks.- 13 Generalizations and Open Questions.- 14 Further Directions.

最近チェックした商品