Machine Learning in Finance : Trends, Developments and Business Practices in the Financial Sector (Contributions to Finance and Accounting)

個数:
  • ポイントキャンペーン

Machine Learning in Finance : Trends, Developments and Business Practices in the Financial Sector (Contributions to Finance and Accounting)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 199 p.
  • 言語 ENG
  • 商品コード 9783031832659
  • DDC分類 332.0285631

Full Description

This book discusses the evolution of technical features in decentralized finance and focuses on machine-learning finance in emerging economies. As technological advancement evolves at an unpredictable pace, the financial industry, like every other sector, must adapt accordingly. Furthermore, the rapid expansion of diverse financial products and services is creating new applications and markets. Alongside technological progress, the exploration of complex patterns in vast amounts of data, known as big data, is facilitated by its commonly acknowledged characteristics: volume, variety, veracity, value, and velocity.

Overall, machine learning has become crucial in the financial industry, allowing businesses to automate operations, gain insights from data, and make more informed decisions in real time. This edited book covers algorithmic trading, risk management, fraud detection, customer service and personalization, portfolio management, credit scoring, sentiment analysis, and algorithmic pricing. The book connects theoretical concepts with practical real-world applications, benefiting professionals looking to enhance their proficiency in using these methods efficiently. It offers insightful guidance for theorists, market participants, and policymakers by exploring financial theories and practices in light of contemporary machine-learning approaches, with a special emphasis on emerging economies.

Contents

Chapter 1. Machine Learning in Finance: Transformation of Financial Markets (Musa Gün).- Chapter 2. Digital Currencies and Financial Transformation (Bilal Bagis).- Chapter 3. A Hybrid ARIMA-LSTM/GRU Model for Forecasting Monthly Trends in Turkey's Gold and Currency Markets with a Macro-Economic Data-Driven Approach (Mehmet Fatih Sert).- Chapter 4. Predicting The Environmental Impact of Financial Development with Machine Learning Algorithms (Burcu Kartal).- Chapter 5. A Comparative Analysis of Artificial Neural Networks and Time Series Models in Exchange Rate Forecasting (Emre ÜRKMEZ).- Chapter 6. The Imbalanced Data Problem: Investigating Factors Affecting Financial Freedom Using Data Mining Techniques with SMOTE Method (Abdurrahman Coşkuner).- Chapter 7. The Impact of ESG Factors on the Propensity for Dividends for European Firms: A Machine Learning Approach (Önder DORAK).- Chapter 8. Machine Learning Algorithms to Study the Impact of Sustainability on Financial Success: Evidence from US Stock Market (Merve Doğruel).- Chapter 9. Predicting Borsa Istanbul Banking and Finance Stocks Using Turkish Social Media Sentiment with Machine and Deep Learning (Deniz Sevinç).- Chapter 10. Portfolio Management Through Algorithmic Trading (Ahmet AKUSTA).- Chapter 11. Assessing Bitcoin Return Extrema in the Context of Extreme Value Theory (Erhan Uluceviz).- Chapter 12. Machine Learning in Portfolio Optimization (Diler TÜRKOĞLU).

最近チェックした商品