Mathematical Modeling and Intelligent Control for Combating Pandemics (Springer Optimization and Its Applications)

個数:

Mathematical Modeling and Intelligent Control for Combating Pandemics (Springer Optimization and Its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 272 p.
  • 商品コード 9783031331824

Full Description

The contributions in this carefully curated volume, present cutting-edge research in applied mathematical modeling for combating COVID-19 and other potential pandemics. Mathematical modeling and intelligent control have emerged as powerful computational models and have shown significant success in combating any pandemic. These models can be used to understand how COVID-19 or other pandemics can spread, analyze data on the incidence of infectious diseases, and predict possible future scenarios concerning pandemics. This book also discusses new models, practical solutions, and technological advances related to detecting and analyzing COVID-19 and other pandemics based on intelligent control systems that assist decision-makers, managers, professionals, and researchers. Much of the book focuses on preparing the scientific community for the next pandemic, particularly the application of mathematical modeling and intelligent control for combating the Monkeypox virus and Langya Henipavirus.

Contents

Part. 1. Mathematical Modeling and analysis for Covid-19 Pandemic.- Chapter. 1. An Extended Fractional SEIR Model to Predict the Spreading Behavior of COVID-19 Disease using Monte-Carlo Back Sampling.- Chapter. 2. Dynamics and optimal control methods for the COVID-19 model.- Chapter. 3. Optimal Strategies to Prevent COVID-19 from Becoming a Pandemic.- Chapter. 4. Modeling and analysis of COVID-19 based on a deterministic compartmental model and Bayesian inference.- Chapter. 5. Predicting the Infection Level of Covid-19 Virus using Normal Distribution Based Approximation Model and PSO.- Chapter. 6. An Optimal Vaccination Scenario for COVID-19 Transmission Between Children and Adults.- Part. 2. Intelligent Control Techniques and Covid-19 Pandemic.- Chapter. 7. The Role of Artificial Intelligence and Machine Learning for the Fight Against COVID-19.- Chapter. 8. Coronavirus Lung Image Classification with Uncertainty Estimation using Bayesian Convolutional Neural Networks.- Chapter.9. Identify Unfavorable COVID Medicine Reactions From The Three-Dimensional Structure By Employing Convolutional Neural Network.- Chapter. 10. Using Reinforcement Learning for optimizing COVID-19 vaccine distribution strategies.- Chapter. 11. Incorporating Contextual Information and Feature Fuzzification for Effective Personalized Healthcare Recommender System.- Chapter. 12. Prediction of Growth and Review of Factors influencing the Transmission of COVID-19.- Chapter. 13. COVID-19 Combating Strategies and Associated Variables for its Transmission: An approach with multi-criteria decision-making techniques in the Indian context.- Chapter. 14. Crisis management, Internet and AI: Information in the age of COVID-19, and future pandemics.

最近チェックした商品