Representation Theory and Algebraic Geometry : A Conference Celebrating the Birthdays of Sasha Beilinson and Victor Ginzburg (Trends in Mathematics)

個数:

Representation Theory and Algebraic Geometry : A Conference Celebrating the Birthdays of Sasha Beilinson and Victor Ginzburg (Trends in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 459 p.
  • 商品コード 9783030820060

Full Description

The chapters in this volume explore the influence of the Russian school on the development of algebraic geometry and representation theory, particularly the pioneering work of two of its illustrious members, Alexander Beilinson and Victor Ginzburg, in celebration of their 60th birthdays. Based on the work of speakers and invited participants at the conference "Interactions Between Representation Theory and Algebraic Geometry", held at the University of Chicago, August 21-25, 2017, this volume illustrates the impact of their research and how it has shaped the development of various branches of mathematics through the use of D-modules, the affine Grassmannian, symplectic algebraic geometry, and other topics. All authors have been deeply influenced by their ideas and present here cutting-edge developments on modern topics. Chapters are organized around three distinct themes:

Groups, algebras, categories, and representation theory
D-modules and perverse sheaves
Analogous varieties defined by quivers

Representation Theory and Algebraic Geometry will be an ideal resource for researchers who work in the area, particularly those interested in exploring the impact of the Russian school.

Contents

Part I: Groups, algebras, categories, and their representation theory.- On semisimplification of tensor categories.- Total aspherical parameters for Cherednik algebras.- Microlocal approach to Lusztig's symmetries.- Part II: D-modules and perverse sheaves, particularly on flag varieties and their generalizations.- Fourier-Sato Transform on hyperplane arrangements.- A quasi-coherent description of the category D-mod(Gr GL(n)).- The semi-infinite intersection cohomology sheaf--II: the Ran space version.- A topological approach to Soergel theory.- Part III: Varieties associated to quivers and relations to representation theory and symplectic geometry.- Loop Grassmannians of quivers and affine quantum groups.- Symplectic resolutions for multiplicative quiver varieties and character varieties for punctured surfaces.

最近チェックした商品