Building AI Intensive Python Applications : Create intelligent apps with LLMs and vector databases

個数:

Building AI Intensive Python Applications : Create intelligent apps with LLMs and vector databases

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 298 p.
  • 言語 ENG
  • 商品コード 9781836207252
  • DDC分類 005.133

Full Description

Master retrieval-augmented generation architecture and fine-tune your AI stack, along with discovering real-world use cases and best practices to create powerful AI apps

Key Features

Get to grips with the fundamentals of LLMs, vector databases, and Python frameworks
Implement effective retrieval-augmented generation strategies with MongoDB Atlas
Optimize AI models for performance and accuracy with model compression and deployment optimization
Purchase of the print or Kindle book includes a free PDF eBook

Book DescriptionThe era of generative AI is upon us, and this book serves as a roadmap to harness its full potential. With its help, you'll learn the core components of the AI stack: large language models (LLMs), vector databases, and Python frameworks, and see how these technologies work together to create intelligent applications.
The chapters will help you discover best practices for data preparation, model selection, and fine-tuning, and teach you advanced techniques such as retrieval-augmented generation (RAG) to overcome common challenges, such as hallucinations and data leakage. You'll get a solid understanding of vector databases, implement effective vector search strategies, refine models for accuracy, and optimize performance to achieve impactful results. You'll also identify and address AI failures to ensure your applications deliver reliable and valuable results. By evaluating and improving the output of LLMs, you'll be able to enhance their performance and relevance.
By the end of this book, you'll be well-equipped to build sophisticated AI applications that deliver real-world value.What you will learn

Understand the architecture and components of the generative AI stack
Explore the role of vector databases in enhancing AI applications
Master Python frameworks for AI development
Implement Vector Search in AI applications
Find out how to effectively evaluate LLM output
Overcome common failures and challenges in AI development

Who this book is forThis book is for software engineers and developers looking to build intelligent applications using generative AI. While the book is suitable for beginners, a basic understanding of Python programming is required to make the most of it.

Contents

Table of Contents

Getting Started with Generative AI
Building Blocks of Intelligent Applications
Large Language Models
Embedding Models
Vector Databases
AI/ML Application Design
Useful Frameworks, Libraries, and APIs
Implementing Vector Search in AI Applications
LLM Output Evaluation
Refining the Semantic Data Model to Improve Accuracy
Common Failures of Generative AI
Correcting and Optimizing Your Generative AI Application

最近チェックした商品