Introduction to Neural Network Verification (Foundations and Trends® in Programming Languages)

個数:

Introduction to Neural Network Verification (Foundations and Trends® in Programming Languages)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 180 p.
  • 言語 ENG
  • 商品コード 9781680839104
  • DDC分類 006.32

Full Description

Over the past decade, a number of hardware and software advances have conspired to thrust deep learning and neural networks to the forefront of computing. Deep learning has created a qualitative shift in our conception of what software is and what it can do: Every day we're seeing new applications of deep learning, from healthcare to art, and it feels like we're only scratching the surface of a universe of new possibilities.This book offers the first introduction of foundational ideas from automated verification as applied to deep neural networks and deep learning. It is divided into three parts:Part 1 defines neural networks as data-flow graphs of operators over real-valued inputs. Part 2 discusses constraint-based techniques for verification. Part 3 discusses abstraction-based techniques for verification. The book is a self-contained treatment of a topic that sits at the intersection of machine learning and formal verification. It can serve as an introduction to the field for first-year graduate students or senior undergraduates, even if they have not been exposed to deep learning or verification.

Contents

1. A New Beginning
2. Neural Networks as Graphs
3. Correctness Properties
4. Logics and Satisfiability
5. Encodings of Neural Networks
6. DPLL Modulo Theories
7. Neural Theory Solvers
8. Neural Interval Abstraction
9. Neural Zonotope Abstraction
10. Neural Polyhedron Abstraction
11. Verifying with Abstract Interpretation
12. Abstract Training of Neural Networks
13. The Challenges Ahead
Acknowledgements
References

最近チェックした商品