統計的推測入門(テキスト)<br>Introductory Statistical Inference

個数:

統計的推測入門(テキスト)
Introductory Statistical Inference

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9781574446135
  • DDC分類 519.54

基本説明

Discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference.

Full Description

This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.

Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of distributions, and standard probability inequalities. It develops the Helmert transformation for normal distributions, introduces the notions of convergence, and spotlights the central limit theorems. Coverage highlights sampling distributions, Basu's theorem, Rao-Blackwellization and the Cramér-Rao inequality. The text also provides in-depth coverage of Lehmann-Scheffé theorems, focuses on tests of hypotheses, describes Bayesian methods and the Bayes' estimator, and develops large-sample inference. The author provides a historical context for statistics and statistical discoveries and answers to a majority of the end-of-chapter exercises.

Designed primarily for a one-semester, first-year graduate course in probability and statistical inference, this text serves readers from varied backgrounds, ranging from engineering, economics, agriculture, and bioscience to finance, financial mathematics, operations and information management, and psychology.

Contents

Review of Probability and Related Concepts. Sufficiency, Completeness, and Ancillarity. Point Estimation. Tests of Hypotheses. Confidence Interval Estimation. Bayesian Methods. Likelihood Ratio and Other Tests. Large-Sample Inference. Sample Size Determination: Two-Stage Procedures. Regression Analysis: Fitting a Straight Line. Nonparametric Methods. Bootstrap Methods. Appendix. References.

最近チェックした商品