Overlapping Iterated Function Systems from the Perspective of Metric Number Theory (Memoirs of the American Mathematical Society)

個数:

Overlapping Iterated Function Systems from the Perspective of Metric Number Theory (Memoirs of the American Mathematical Society)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 95 p.
  • 言語 ENG
  • 商品コード 9781470464400
  • DDC分類 518.26

Full Description

In this paper we develop a new approach for studying overlapping iterated function systems. This approach is inspired by a famous result due to Khintchine from Diophantine approximation which shows that for a family of limsup sets, their Lebesgue measure is determined by the convergence or divergence of naturally occurring volume sums. For many parameterised families of overlapping iterated function systems, we prove that a typical member will exhibit similar Khintchine like behaviour. Families of iterated function systems that our results apply to include those arising from Bernoulli convolutions, the {0, 1, 3} problem, and affine contractions with varying translation parameter. As a by-product of our analysis we obtain new proofs of some well known results due to Solomyak on the absolute continuity of Bernoulli convolutions, and when the attractor in the {0, 1, 3} problem has positive Lebesgue measure.

For each t ? [0, 1] we let ?t be the iterated function system given by ?t := ?1(x) = x 2 , ?2(x) = x + 1 2 , ?3(x) = x + t 2 , ?4(x) = x +1+ t 2 .

We prove that either ?t contains an exact overlap, or we observe Khintchine like behaviour. Our analysis shows that by studying the metric properties of limsup sets, we can distinguish between the overlapping behaviour of iterated function systems in a way that is not available to us by simply studying properties of self-similar measures.

Last of all, we introduce a property of an iterated function system that we call being consistently separated with respect to a measure. We prove that this property implies that the pushforward of the measure is absolutely continuous. We include several explicit examples of consistently separated iterated function systems.

最近チェックした商品