Deep Learning for Intrusion Detection : Techniques and Applications

個数:
電子版価格
¥18,761
  • 予約
  • 電子版あり

Deep Learning for Intrusion Detection : Techniques and Applications

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 336 p.
  • 言語 ENG
  • 商品コード 9781394285167

Full Description

Comprehensive resource exploring deep learning techniques for intrusion detection in various applications such as cyber physical systems and IoT networks

Deep Learning for Intrusion Detection provides a practical guide to understand the challenges of intrusion detection in various application areas and how deep learning can be applied to address those challenges. It begins by discussing the basic concepts of intrusion detection systems (IDS) and various deep learning techniques such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep belief networks (DBNs). Later chapters cover timely topics including network communication between vehicles and unmanned aerial vehicles. The book closes by discussing security and intrusion issues associated with lightweight IoTs, MQTT networks, and Zero-Day attacks.

The book presents real-world examples and case studies to highlight practical applications, along with contributions from leading experts who bring rich experience in both theory and practice.

Deep Learning for Intrusion Detection includes information on:

Types of datasets commonly used in intrusion detection research including network traffic datasets, system call datasets, and simulated datasets
The importance of feature extraction and selection in improving the accuracy and efficiency of intrusion detection systems
Security challenges associated with cloud computing, including unauthorized access, data loss, and other malicious activities
Mobile Adhoc Networks (MANETs) and their significant security concerns due to high mobility and the absence of a centralized authority

Deep Learning for Intrusion Detection is an excellent reference on the subject for computer science researchers, practitioners, and students as well as engineers and professionals working in cybersecurity.

Contents

List of Contributors xvii

1 Intrusion Detection in the Age of Deep Learning: An Introduction 1

2 Machine Learning for Intrusion Detection 25

3 Deep Learning Fundamentals-I 59

4 Deep Learning Fundamentals-II 91

5 Intrusion Detection Through Deep Learning: Emerging Trends and Challenges 107

6 Dataset for Evaluating Deep Learning-Based Intrusion Detection 125

7 Deep Learning Features: Techniques for Extraction and Selection 147

8 Exploring Advanced Artificial Intelligence for Anomaly Detection 167

9 Enhancing Security in Smart Environments Using Deep Learning: A Comprehensive Approach 185

10 Deep Learning-Based Intrusion Detection in Wireless Networks 209

11 Deep Learning-Based Intrusion Detection in Wireless Networks 233

12 Securing IoT Environments: Deep Learning-Based Intrusion Detection 251

13 A Deep Learning Approach for the Detection of Zero-day Attacks 267

Index 285

最近チェックした商品