Optic Technologies Enabling Fusion Ignition

個数:
電子版価格
¥29,192
  • 電子版あり

Optic Technologies Enabling Fusion Ignition

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 688 p.
  • 言語 ENG
  • 商品コード 9781394268245
  • DDC分類 621.4840284

Full Description

A powerful and up-to-date desk reference for advancements in optic technologies for high energy lasers

In Optic Technologies Enabling Fusion Ignition, a team of veteran optics and laser specialists deliver an expert summary of optic manufacturing technologies, laser-induced optic damage reduction technologies, and optic repair & recycle technologies. The authors explore the fundamental scientific phenomena and how they have driven the development of optic technologies as well as the process of transitioning from scientific discovery to large-scale production.

The book combines examinations of improving overall optic performance, optic survivability, and laser performance. It also covers novel bulk material developments, yield processing improvement methods, novel metrologies, and advancements in increasing laser-induced damage resistance.

Readers will also find:

A thorough introduction to the details of optics recycle loop technologies, including the refurbishment and repair of laser-induced damaged optics
Comprehensive explorations of advancements in optical fabrication and post-processing reducing laser damaging surface precursors
Practical discussions of the fundamental physics of laser-matter interactions related to laser-induced damage
Complete treatments of laser-induced damage data management, the use of online shadow blockers, and novel optics metrologies

Ideal for optical and laser scientists, engineers, and fabricators of optical materials and components, Optic Technologies Enabling Fusion Ignition is also a valuable resource for graduate students interested in optics, as well as high-energy and high-power laser research.

Contents

List of Figures xv

List of Contributors liii

Preface lv

Acknowledgments lix

Glossary of Symbols and Abbreviations lxi

1 Introduction - Path to Ignition Enabled by Optics 1
Tayyab I. Suratwala

1.1 Ignition 1

1.2 National Ignition Facility 5

1.3 NIF Large Optics 7

1.3.1 Optic Technologies Development 8

1.3.2 Laser Damage Reduction 13

1.3.3 Optics Recycle Loop Strategy 15

1.3.4 Loop Management and Performance 18

1.3.5 Ingredients for Success 20

1.4 Book Organization 22

References 24

Part I Optic Manufacturing Technologies 29

2 NIF Optics 31
Christopher J. Stolz, Kathleen I. Schaffers, Lana L. Wong, and Hoang T. Nguyen

2.1 NIF Optics Functionality 31

2.2 Front-End and Diagnostic Optics 35

2.3 Amplifier Optics 37

2.3.1 Laser Glass 37

2.3.2 Cladding 39

2.3.3 Blast Shields 39

2.4 Vacuum Barriers and Focusing Optics 40

2.4.1 Spatial Filter Lenses (SF1-4) 40

2.4.2 Vacuum Windows (SW, TCVW, and GDS) 42

2.4.3 Off-Axis Wedged Focus Lens (WFL) 43

2.5 Beam-Steering Optics 44

2.5.1 Cavity Mirrors (LM1-2) 45

2.5.2 Transport Mirrors (LM4-8) 46

2.6 Polarizing Optics and Frequency Conversion 49

2.6.1 Polarizing Optics (PL, SC, and PR) 49

2.6.2 Frequency Conversion Crystals (SHG and THG) 51

2.7 Beam-Formatting Optics (Continuous Phase Plates) 52

2.8 Debris-Shield Optics 54

2.8.1 Disposable Debris Shield (DDS) 54

2.8.2 Fused-Silica Debris Shield (FSDS) 55

2.8.3 Grating Debris Shield (GDS) 56

2.9 Short Pulse Optics for Advanced Radiographic Capability (ARC) 58

2.10 Summary 65

References 65

3 Optics Industry, Facilitization, and Sustainability 73
ChristopherJ.Stolz

3.1 Vendor Partnership Strategy 73

3.1.1 Technology Development 74

3.1.2 Facilitization 75

3.1.3 Pilot Production 79

3.1.4 Production 80

3.2 Manufacturing Rate Improvement 82

3.2.1 Continuous Melting of Laser Phosphate Glass 82

3.2.2 Fabrication of Crystal Optics 82

3.2.3 Grinding Technology of Glass Optics (ELID) 85

3.2.4 Computer Controlled Polishing of Fused-Silica Optics 86

3.3 Strategies for Robust Optics Supply 88

3.3.1 Competitive Versus Sole Source 88

3.3.2 Minimizing Optics Supply Risk 90

3.4 Institutional Partnerships 92

3.5 Sustainability for Multi-decade Operations 93

3.6 Summary 94

Acknowledgments 94

References 94

4 Nd-Doped Laser Phosphate Glass 99
Tayyab I. Suratwala and Paul Ehrmann

4.1 Introduction 99

4.2 Glass Composition and Properties 100

4.3 Continuous Melting 102

4.4 OH Content 105

4.5 Fracture 109

4.5.1 Slow Crack Growth 109

4.5.2 Surface Tension via OH Diffusion 112

4.6 Corrosion Resistance 115

4.6.1 Weathering 115

4.6.2 Haze: Ceria Reactivity with Surface 119

4.7 Pt Inclusions 122

4.8 Impurities 124

4.9 Glass Quality, Selection Rules, and Performance 126

Acknowledgments 130

References 130

5 KDP and DKDP Crystals 135
Kathleen I. Schaffers and Tayyab I. Suratwala

5.1 Introduction 135

5.2 Crystal Composition and Properties 136

5.3 KDP and DKDP Growth Technologies 138

5.4 Technical Challenges 142

5.4.1 Crystal Growth to Large Size 142

5.4.2 D/H Exchange (E-Cracking) 145

5.4.3 Reaction with Humidity (Etch Pits) 148

5.4.4 Laser-Induced Surface Roughening in a Vacuum 151

5.4.5 Fracture 152

5.4.6 Liquid Inclusions 155

5.4.7 Bulk Laser Damage and Laser Conditioning 156

5.5 Summary 159

Acknowledgments 159

References 159

6 3ω Finishing 163
Tayyab I. Suratwala

6.1 Sub-surface Mechanical Damage 164

6.1.1 Grinding SSD Management 164

6.1.2 Polishing SSD Management 167

6.1.3 Scratch Forensics 170

6.2 Role of Chemical Etching 172

6.2.1 Strip Etch 173

6.2.2 Bulk Etching 174

6.2.3 Chemical Impurity Removal 178

6.3 Strategy for 3ω Finishing and Production Impact 178

References 180

Part II Optic Laser-Induced Damage Reduction Technologies 183

7 Laser-Induced Damage Mechanisms 185
C. Wren Carr

7.1 Laser-Induced Damage Process and Location Implications 185

7.2 Initial Absorption 187

7.3 Types of Laser-Induced Damage 188

7.3.1 Gray Haze 188

7.3.2 Exit Surface Damage on SiO 2 Glass 189

7.3.3 Bulk Damage in KDP and DKDP 191

7.3.4 Damage in MLD Coatings 193

7.4 Initial Absorption Mechanisms 194

7.4.1 Initial Absorption by Intrinsic Mechanisms 194

7.4.2 Initial Absorption by Extrinsic Mechanisms 196

7.5 Secondary Absorption 201

7.6 Material Response 205

7.6.1 Material Response After Damage 205

7.6.2 Material Response Without Damage 210

References 210

8 Laser-Damage Measurement and Analysis Methods 215
David A. Cross and C. Wren Carr

8.1 Introduction 215

8.1.1 Why Are Laser-Damage Measurements Needed? 215

8.1.2 Misconceptions Concerning Laser Damage 216

8.2 Measurement 219

8.2.1 Material Laser Exposure 219

8.2.2 Material Response 221

8.3 Analysis 223

8.3.1 Multimodal Registration 223

8.3.2 Damage-Initiation Measurements 227

8.3.3 Damage-Growth Measurements 232

References 237

9 Parameters Affecting Laser-Induced Damage Initiation and Growth 241
Raluca A. Negres and C. Wren Carr

9.1 Introduction 241

9.2 Initiation 243

9.2.1 Fluence, Wavelength, and Optic Quality 244

9.2.2 Pulse Length and Shape 245

9.2.2.1 Nanosecond Pulse-Width Regime 245

9.2.2.2 Picosecond Pulse-Width Regime 247

9.3 Growth 248

9.3.1 Multi-shot Growth Behaviors 249

9.3.1.1 Fluence, Wavelength, and Location 249

9.3.1.2 Multi-wavelength Irradiation 250

9.3.2 Single-Shot Growth Behaviors 251

9.3.2.1 Probability of Growth 253

9.3.2.2 Growth Rate 257

9.4 Summary 261

References 262

10 Advanced Mitigation Process (AMP) 267
Diana VanBlarcom

10.1 Introduction 267

10.2 Development of the AMP Process 268

10.2.1 Etching to Mitigate Scratches 269

10.2.2 Etching to Mitigate Chemical Impurities 273

10.3 Production Implementation 277

10.3.1 AMP Station 277

10.3.2 AMP Recipes 278

10.3.3 Post-AMP Surface Degradations 279

10.3.4 AMP Production Rates 281

10.3.5 Quality Assurance and Safety 282

10.4 Conclusions and the Future of AMP 283

References 283

11 Debris-Induced Damage Reduction on 3ω-Fused-Silica Optics 285
Rajesh N. Raman, Christopher F. Miller, and C. Wren Carr

11.1 Evidence of a New Damage Source 285

11.1.1 High Online Damage Initiation Rates After AMP 285

11.1.2 Damage Spatial Distribution 286

11.1.3 Debris on Optic and Damage Morphology 288

11.1.4 Debris Morphology and Composition 290

11.2 Sources of Debris 292

11.3 Physics of Debris-Induced Laser Damage 293

11.3.1 Deposition Mechanism 293

11.3.2 Material Type 296

11.3.3 Fluence and Particle Size 302

11.4 Mitigation of Debris-Induced Damage and Impact 303

11.4.1 Antireflection Coating on Grating Surface of GDS 304

11.4.2 Fused-Silica Debris Shield (FSDS) to Protect GDS 305

11.4.3 Metal Barriers to Block Debris Transit 307

11.4.4 Laser Cleaning 308

References 309

12 Silica Sol-Gel Antireflective Coatings 311
StephenH.Mezyk

12.1 Introduction 311

12.2 Single Layer Antireflective Optical Coatings 313

12.3 Stöber Silica Sol-Gel 315

12.4 Chemically Processing Stöber Silica for Enhanced Mechanical and Environmental Stability 316

12.5 Wet-Film Deposition Processes 319

12.6 Ellipsometry for Process Control 320

12.7 Volume Production of Sol-Gel Thin Films 323

12.8 Conclusion 325

References 326

13 Multilayer Dielectric Coatings 329
Colin M. Harthcock

13.1 Introduction 329

13.2 MLD Design Fundamentals 329

13.2.1 Complex Index and Reflectivity 330

13.2.2 Admittance of Optical Thin Films 331

13.2.3 MLD Coating-Design Examples 334

13.2.4 Polarization and Angle of Incidence 337

13.3 Laser-Damage Resistance 340

13.3.1 Electrical-Field Intensification 340

13.3.2 Optical Bandgap 342

13.3.3 Absorbing Precursors and Their Mitigations 345

13.3.3.1 Molecular and Atomic-Level Precursors 345

13.3.3.2 Within Coating Particulate Precursors 348

13.3.3.3 Foreign-Object Debris Precursors 350

13.4 Coating Structure and Deposition Energetics 356

13.5 Coating Deposition Process Variables and Methods 359

References 362

14 Optics Recycle Loop 367
Pamela K. Whitman and Brian J. Welday

14.1 Operation Strategy 367

14.2 Enabling Technologies 372

14.3 Optics Recycle Loop Process 373

14.4 Models to Describe the Optics Recycle Loop 380

14.4.1 Growth Rate of Fused-Silica Glass Damage 381

14.4.2 Analytical Model of Optics Exchange Rate 382

14.4.3 System Initiation Rate 383

14.4.4 Multi-loop Model 384

14.5 Historical Performance and Tailorability 386

14.6 Summary 390

Acknowledgments 390

References 392

Part III Optic Recycle Loop Technologies 395

15 Custom Processing Equipment 397
Vaughn E. Van Note and Henry A. Hui

15.1 Introduction 397

15.2 Systems Engineering Approach 398

15.3 Integrated Product Review Board 400

15.3.1 Failure Modes and Effects Analysis 402

15.3.2 Concept of Operations 404

15.3.3 Work Authorization Process 405

15.4 Advanced Mitigation Process (AMP) Station 406

15.5 Meniscus Coaters 409

15.6 Diffractive Optic Full Aperture System Test (DOFAST) 411

15.7 Assembly Stations 413

15.8 GDS Imprinting System 416

15.9 Sustaining Capabilities and the Future 418

Acknowledgments 421

References 421

16 Optics Inspection and Data Management 423
Laura M. Kegelmeyer

16.1 Optics Inspection Camera Systems on NIF 423

16.1.1 SIDE System for Imaging the Target Chamber Vacuum Window 425

16.1.2 LOIS for Imaging Main Laser Optics and Switchyard Mirrors 425

16.1.3 FODI for Imaging Final Optics and Some Switchyard Mirrors 428

16.2 Finding, Identifying, and Tracking Damage on NIF Optics 430

16.2.1 Image Analysis and Machine Learning 431

16.2.2 Fiducials and Defect Tracking Through Time and Space 436

16.3 Data Management and Applications 438

16.3.1 Integrated Analyses, Databases, and Reporting 438

16.3.2 Tools for Data Visualization 440

16.4 Summary 442

Acknowledgments 442

References 443

17 Online Programmable Shadow Blockers 445
Rajesh N. Raman, Tayyab I. Suratwala, and Pamela K. Whitman

17.1 Programmable Spatial Shaper Device Capability 446

17.2 Blocker Deployment and Optic Exchange 446

17.3 Blocker Constraints 449

17.4 Blocker Distribution Optimization 451

17.5 Production Metrics and Historical Behavior 454

References 455

18 Optic Metrology 457
Mike C. Nostrand

18.1 Full-Aperture Tools 459

18.1.1 Defects in the Antireflective coating using FADLiB 459

18.1.2 Surface Damage and Digs Using DMS 460

18.1.3 Surface Phase Objects 462

18.1.4 General Surface Features Using TID 463

18.1.5 Diffraction-Grating Efficiency and Uniformity Using DOFAST 464

18.2 Sub-aperture Tools 468

18.2.1 Phase and Amplitude of Phase Objects Using PSDI 468

18.2.2 Downstream Modulation Using MMS 470

18.2.3 Removing Coating Defects from Crystals Using FLRT 470

18.2.4 Crystal Phase-Matching Angles Using CATS 472

18.2.5 Threat-Determination Software 473

18.3 Commercial Tools 474

18.3.1 Full-Aperture Tools 474

18.3.2 Reflected and Transmitted Wave Front 474

18.3.3 Sub-aperture Tools 475

18.3.4 Optical-Surface Profiling 475

18.3.5 Optical Microscopy 475

18.3.6 Ellipsometry 477

18.4 Summary 478

References 479

19 Repair of Flaws and Laser-Induced Damage 481
Isaac L. Bass, Todd Noste, and Scott K. Trummer

19.1 Laser-Damage Repair on Fused Silica 481

19.1.1 Damage-Mitigation Requirements 483

19.1.2 Stationary-Beam Mitigation 484

19.1.3 Moving-Beam Mitigation 485

19.1.4 Rapid Ablation Mitigation 486

19.1.5 RAM Applied to Exit-Surface Damage 489

19.1.6 On-Axis Downstream Intensification from Exit-Surface RAM Cones 490

19.1.7 Damage Resistance of RAM Cones 491

19.1.8 Managing Redeposit from RAM Cones 493

19.1.9 Residual Stress from RAM Cones 496

19.1.10 RAM Applied to Input Surface Damage 497

19.1.11 RAM Applied to AR-Coated GDSs 501

19.1.12 RAM Cones Contribution to Obscuration 504

19.1.13 Reliability, Availability, and Maintainability of Mitigation Equipment 504

19.1.14 Investigation of Mitigation at 4.6-μm Wavelength 505

19.2 Laser-Damage Initiation-Site Repair on KDP Crystals 505

19.2.1 Anatomy of a KDP Mitigation Site 506

19.2.2 Ductile Machining of KDP 508

19.2.3 Crystal Mitigation Station 508

19.2.4 Commissioning the CMS and Mitigation Sites 510

19.2.5 KDP Damage-Site Mitigation Challenges 514

19.2.6 Future Efforts and Upgrades 515

Acknowledgments 515

References 515

20 Laser-Induced Damage Repair Automation 521
Scott K. Trummer

20.1 Repair Process for 3ω Fused-Silica Optics 521

20.1.1 Preprocessing 522

20.1.2 Software Setup 523

20.1.3 Optic Registration 523

20.1.4 Pre-mitigation Inspection 523

20.1.5 Mitigation and Post-mitigation Analysis 524

20.1.6 Postprocessing and Data Export 524

20.2 OMF Automation 524

20.2.1 Data Handling and Expanded Software Capabilities 525

20.2.2 Pre-mitigation Inspection and Protocol Assignment 527

20.2.3 Mitigation and Post-mitigation Inspection 534

20.2.4 Limitations of Automation 537

20.3 Production Metrics 539

References 541

21 Laser-Induced Damage Identification Using AI 543
Christopher F. Miller and David A. Cross

21.1 Improving Lifetime of Recycled Optics 544

21.2 The All Microscopy Hitlist (AMH) 545

21.2.1 Requirements and Process Strategy 546

21.2.2 Optic Verification and Large-Optic Scan 547

21.2.3 Optic Montage Analysis 550

21.2.3.1 Feature Finding 551

21.2.3.2 Large-Feature Analysis 552

21.2.4 Small-Site Inspection and Classification 555

21.3 Maximizing the Utility of Optic Repairs 556

21.3.1 Optic Triaging 556

21.3.2 End-of-Life Optics 557

References 558

22 On-Optic Shadow Cone Blockers 561
Eyal Feigenbaum, Allison E. Browar, Isaac L. Bass, and Rajesh N. Raman

22.1 Inherent Advantages and Challenges 561

22.1.1 On-Optics Shadowing Approach and Its Advantages 561

22.1.2 The SCB-Resulting Expanding Wave and Subsequent Exit Surface Damage 564

22.1.3 Size Limitations on the Diameter of Conic-Shaped SCB 567

22.2 Approaches for Implementation of Larger SCBs 569

22.2.1 Rounded Sidewalls SCB 570

22.2.2 Larger Shadowed Area Using SCB Arrays 576

22.3 Utilization and Application Considerations 578

22.3.1 FODI "Bleeding" and Potential Solutions 579

22.3.2 Implementation and Testing of SCB Online 580

References 586

23 Contamination Management from Nonoptical Materials 587
Liang-Yu Chen and Tayyab I. Suratwala

23.1 Particle Debris and Residue 588

23.1.1 Surface-Particle Cleanliness Measurement 588

23.1.2 Nonvolatile Residue (NVR) Measurement 589

23.1.3 Gross and Precision Cleaning 591

23.2 Airborne Molecular Contaminants (AMCs) 594

23.2.1 Vacuum-Outgas Test 594

23.2.2 High-Temperature Bakeout to Remove Volatile Organics 601

23.2.3 Polymer Example: Silicone 603

23.3 Summary 605

Acknowledgments 606

References 606

Index 609

最近チェックした商品