I.スチュアート著/複素解析(テキスト・第2版)<br>Complex Analysis (2ND)

個数:
電子版価格
¥5,332
  • 電子版あり

I.スチュアート著/複素解析(テキスト・第2版)
Complex Analysis (2ND)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 402 p.
  • 言語 ENG
  • 商品コード 9781108436793
  • DDC分類 515.9

Full Description

This new edition of a classic textbook develops complex analysis from the established theory of real analysis by emphasising the differences that arise as a result of the richer geometry of the complex plane. Key features of the authors' approach are to use simple topological ideas to translate visual intuition to rigorous proof, and, in this edition, to address the conceptual conflicts between pure and applied approaches head-on. Beyond the material of the clarified and corrected original edition, there are three new chapters: Chapter 15, on infinitesimals in real and complex analysis; Chapter 16, on homology versions of Cauchy's theorem and Cauchy's residue theorem, linking back to geometric intuition; and Chapter 17, outlines some more advanced directions in which complex analysis has developed, and continues to evolve into the future. With numerous worked examples and exercises, clear and direct proofs, and a view to the future of the subject, this is an invaluable companion for any modern complex analysis course.

Contents

Preface to the first edition; Preface to the second edition; The origins of complex analysis, and its challenge to intuition; 1. Algebra of the complex plane; 2. Topology of the complex plane; 3. Power series; 4. Differentiation; 5. The exponential function; 6. Integration; 7. Angles, logarithms, and the winding number; 8. Cauchy's theorem; 9. Homotopy versions of Cauchy's theorem; 10. Taylor series; 11. Laurent series; 12. Residues; 13. Conformal transformations; 14. Analytic continuation; 15. Infinitesimals in real and complex analysis; 16. Homology version of Cauchy's theorem; 17. The road goes ever on; References; Index.

最近チェックした商品