Translational Bioinformatics for Therapeutic Development (Methods in Molecular Biology) (2021)

個数:

Translational Bioinformatics for Therapeutic Development (Methods in Molecular Biology) (2021)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 317 p.
  • 言語 ENG
  • 商品コード 9781071608517
  • DDC分類 570.285

Full Description

This volume introduces Translational Bioinformatics as it relates to therapeutic development, and addresses the techniques needed to effectively translate large data sets to relevant biological networks. Chapters detail clinical informatics infrastructure, and leverage pathology, immunology, pharmacology, genomic, proteomic, and metabolomic informatics approaches.   Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, application details for both the expert and non-expert reader, and tips on troubleshooting and avoiding known pitfalls.

 

Authoritative and practical, Translational Bioinformatics for Therapeutic Development: Methods and Protocols aims to ensure success in the study of Translational Bioinformatics.

Contents

Development and Optimization of Clinical Informatics Infrastructure to Support Bioinformatics at an Oncology Center.- Leveraging Pathology Informatics Concepts to Achieve Discrete Lab Data for Clinical Use and Translational Research.- Cohort Identification for Translational Bioinformatics Studies.- Transitioning Clinical Practice Guidelines into the Electronic Health Record through Clinical Pathways.- Variable Selection for Time-to-Event Data.- Binary Classification for Failure Risk Assessment.- Challenges and Opportunities of Genomic Approaches in Therapeutics Development.- Accessible Pipeline for Translational Research using TCGA: Examples of Relating Gene Mechanism to Disease Specific Outcomes.- Statistical and Bioinformatics Analysis of Data from Bulk and Single-Cell RNA Sequencing Experiments.- Investigating Inter- and Intra-Sample Diversity of  Single-Cell RNA Sequencing Datasets.- Managing a Large-scale Multi-Omics Project: A Team Science Case Study in Proteogenomics.- Synergistic Drug Combination Prediction by Integrating Multi-omics Data in Deep Learning Models.- Introduction to Multi-Parametric Flow Cytometry and Analysis of High-Dimensional Data.- High Dimensional Flow Cytometry Analysis of Regulatory Receptors on Human T cells, NK cells, and NKT Cells*.- Quantitative Analysis of Bile Acid with UHPLC-MS/MS.- Sample Preparation and Data Analysis for NMR-based Metabolomics.

 

最近チェックした商品