Longitudinal Analysis of Real World Time-to-event Data in Health Care : Big data approach using R

個数:
  • 予約
  • ポイントキャンペーン

Longitudinal Analysis of Real World Time-to-event Data in Health Care : Big data approach using R

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 240 p.
  • 言語 ENG
  • 商品コード 9781032847474

Full Description

This book presents a practical approach for researchers seeking to analyse patient data over time. It serves as a comprehensive guide, utilising the R programming language to analyse complex datasets efficiently. It provides step-by-step instructions and examples, aiding in data organisation and insightful analysis to accurately predict event occurrences and the impact of different variables on patient outcomes, enhancing decision-making in medical practice.

• With practical examples and case studies, it helps to learn how to apply analysis techniques to real-world healthcare datasets, gaining insights into complex data for informed decision-making.
• Offers comprehensive coverage of relevant techniques and methodologies, including essential topics such as Big Data characteristics, Real-World Evidence significance, real-world data sources, longitudinal and survival data analysis, prediction models, and Bayesian analysis,
• R code examples enable readers to follow along and replicate analyses on their own datasets, reinforcing understanding and practical skills in data analysis.
• Complex statistical concepts are explained clearly, and theory and practical implementation are balanced to ensure an understanding of both concepts and techniques.
• Explained how Big Data transforms healthcare and research, touching on precision medicine, population health management, and complementing clinical trials with RWE.

It covers data preprocessing, integration, and advanced modelling techniques to serve as a valuable resource for professionals and researchers seeking evidence-based decision-making in healthcare and related fields.

Contents

1. Big Data, Real-World Evidence, and R. 2. Preparing and Exploring Real-World Longitudinal Data in R. 3. Survival Analysis in Real World Evidence Data. 4. Longitudinal Data Analysis in Real-World Evidence. 5. Longitudinal Analysis in Real World Evidence Data. 6. Landmark Data Analysis in Real-World Evidence. 7. Joint Longitudinal and Survival Analysis in Real-World Evidence. 8. Prediction Models with Longitudinal Data. 9. Bayesian Analysis of Big Longitudinal Data.

最近チェックした商品