Demystifying AI : Data Science and Machine Learning Using IBM SPSS Modeler (Chapman & Hall/crc Data Mining and Knowledge Discovery Series)

個数:

Demystifying AI : Data Science and Machine Learning Using IBM SPSS Modeler (Chapman & Hall/crc Data Mining and Knowledge Discovery Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 606 p.
  • 言語 ENG
  • 商品コード 9781032740003
  • DDC分類 005.7

Full Description

As artificial intelligence advances at an exponential pace, understanding data science and machine learning has become increasingly essential. Yet, the wide range of available resources can be daunting, posing challenges for beginners. This second book builds on the foundation laid in the first, Data Science and Machine Learning for Non-Programmers: Using SAS Enterprise Miner, providing similar fundamental knowledge of data science and machine learning in an accessible way. It is specifically designed to cater to readers who prefer a hands-on guide using IBM SPSS Modeler, a widely popular software that does not require coding or programming skills. Like the first book, this volume helps learners from various non-technical fields gain practical insight into machine learning but shifts the focus to a different tool for those seeking alternatives to coding.

In this book, readers are guided through practical implementations using real datasets and IBM SPSS Modeler, a user-friendly data mining tool. The approach remains consistent with a focus on application, providing step-by-step instructions for all stages of the data mining process using two large datasets, ensuring continuity and reinforcing concepts in a cohesive project framework. This book also offers practical advice on presenting data mining results effectively, aiding readers in communicating insights clearly to stakeholders.

Together with the first book, this volume is a companion for beginners and experienced practitioners alike. It targets a broad audience, including students, lecturers, researchers, and industry professionals. It offers flexibility in learning pathways and deepens understanding of data science using easy-to-follow, software-based approaches.

Contents

PART I Introduction to Data Mining

Chapter 1 Introduction to Data Mining and Data Science

Chapter 2 Data Mining Processes, Methods, and Software

Chapter 3 Data Sampling and Partitioning

Chapter 4 Data Visualization and Exploration

Chapter 5 Data Modification

PART II Data Mining Methods

Chapter 6 Model Evaluation

Chapter 7 Regression Methods

Chapter 8 Decision Trees

Chapter 9 Neural Networks

Chapter 10 Ensemble Modeling

Chapter 11 Presenting Results and Writing Data Mining Reports

Chapter 12 Principal Component Analysis

Chapter 13 Cluster Analysis

PART III Advanced Data Mining Methods

Chapter 14 Random Forest

Chapter 15 Gradient Boosting

Chapter 16 Bayesian Networks

Appendix A

Appendix B

Appendix C

最近チェックした商品