AI in Chemical Engineering : Unlocking the Power within Data

個数:

AI in Chemical Engineering : Unlocking the Power within Data

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 286 p.
  • 言語 ENG
  • 商品コード 9781032597003
  • DDC分類 660.028563

Full Description

Industry 4.0 is revolutionizing chemical manufacturing. Today's chemical companies are swiftly embracing the digital era, recognizing the significant benefits of interconnected products, production equipment, and personnel. As technology advances and production volumes grow, there is an increasing need for new computational tools and innovative solutions to address everyday challenges. AI in Chemical Engineering: Unlocking the Power Within Data introduces readers to the essential concepts of machine learning and their application in the chemical and process industries, aiming to enhance efficiency, adaptability, and profitability. This work delves into the transformation of traditional plant operations into integrated and intelligent systems, providing readers with a foundation for developing and understanding the tools necessary for data collection and analysis, thereby gaining valuable insights and practical applications.

Introduces the principles and applications of unsupervised learning and discusses the role of machine learning in extracting information from plant data and transforming it into knowledge
Conveys the concepts, principles, and applications of supervised learning, setting the stage for developing advanced monitoring systems, complex predictive models, and advanced computer vision applications
Explores implementation of reinforced learning ideas for chemical process control and optimization, investigating various model structures and discussing their practical implementation in both simulation and experimental units
Incorporates sample code examples in Python to illustrate key concepts
Includes real-life case studies in the context of chemical engineering and covers a wide variety of chemical engineering applications from oil and gas to bioengineering and electrochemistry
Clearly defines types of problems in chemical engineering subject to AI solutions and relates them to subfields of AI

This practical text, designed for advanced chemical engineering students and industry practitioners, introduces concepts and theories in a logical and sequential manner. It serves as an essential resource, helping readers understand both current and emerging developments in this important and evolving field.

Contents

1. Smart Manufacturing and Machine Learning. 2. Data and Data Pretreatment. 3. Dimensionality Reduction (DR). 4. Clustering. 5. Unsupervised Learning Case Study. 6. Concepts and Definitions. 7. Predictive Models. 8. Supervised Learning Case Studies. 9. Deep Learning. 10. Deep Learning Case Studies. 11. Reinforcement Learning. 12. Reinforcement Learning Case Studies. 13. Generative AI. Appendix A. FASTMAN-JMP Tool Architecture. Appendix B. Tennessee Eastman Process (TEP). Appendix C. High-Temperature PEM Fuel Cell Modelling. Appendix D. Distance Metrics for Clustering.

最近チェックした商品