癌研究のための医療統計学テキスト<br>Medical Statistics for Cancer Studies (Chapman & Hall/crc Biostatistics Series)

個数:
電子版価格
¥11,320
  • 電子版あり

癌研究のための医療統計学テキスト
Medical Statistics for Cancer Studies (Chapman & Hall/crc Biostatistics Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 334 p.
  • 言語 ENG
  • 商品コード 9780367486150
  • DDC分類 616.99400727

Full Description

Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author's many years of experience working in a cancer clinical trials unit.

Features:




A broad and accessible overview of statistical methods in cancer research
Necessary background in cancer biology and genetics
Details of statistical methodology with minimal algebra
Many examples using real data from cancer clinical trials
Appendix giving statistics revision.

Contents

1 Introduction. 1.1. About Cancer. 1.2. Cancer studies. 1.3. R Code. 2. Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA, Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis. 3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4. Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial. 4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model. 5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT) Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6. Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation. 6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7. Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5. Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1. How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis. 8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics. 10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3. Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.

最近チェックした商品