出版社内容情報
「機械学習」をPythonでプログラミングし、アルゴリズムの動きを理解しよう!
機械学習のプログラムは様々なライブラリ・モジュールを使うことで簡単に試すことができる。その反面、単にモジュールを使用するだけでは機械学習の中のアルゴリズムがブラックボックス化してしまい、計算結果の意味を正しく捉えることも難しくなってくる。
本書ではまず「機械学習」のアルゴリズムを解説し、機械学習の動きをPythonで実際にプログラミングすることで、アルゴリズムの流れが理解できるよう構成している。まずは黎明期からの機械学習アルゴリズムを理解し、それを実装することが目標となる。
さらにPython用の機械学習モジュールの使用法も解説し、これらを使用したプログラムの作成も行う。機械学習を使いこなすためのイントロダクションとなる1冊。
目次
データに基づいた解析・機械学習とは
データの標準化・主成分分析
線形回帰
過剰適合
最尤推定法
カーネル法
線形判別
サポートベクターマシン
パーセプトロンとロジスティック回帰
多層ニューラルネットワーク
深層学習
畳み込みニューラルネットワーク
Google Colaboratory
Python入門