Description
Categorical Data Analysis and Multilevel Modeling Using R provides a practical guide to regression techniques for analyzing binary, ordinal, nominal, and count response variables using the R software. Author Xing Liu offers a unified framework for both single-level and multilevel modeling of categorical and count response variables with both frequentist and Bayesian approaches. Each chapter demonstrates how to conduct the analysis using R, how to interpret the models, and how to present the results for publication. A companion website for this book contains datasets and R commands used in the book for students, and solutions for the end-of-chapter exercises on the instructor site.
Table of Contents
Chapter 1. R Basics
Chapter 2. Review of Basic Statistics
Chapter 3. Logistic Regression for Binary Data
Chapter 4. Proportional Odds Models for Ordinal Response Variables
Chapter 5. Partial Proportional Odds Models and Generalized Ordinal Logistic Regression Models
Chapter 6. Other Ordinal Logistic Regression Models
Chapter 7. Multinomial Logistic Regression Models
Chapter 8. Poisson Regression Models
Chapter 9. Negative Binomial Regression Models and Zero-Inflated Models
Chapter 10. Multilevel Modeling for Continuous Response Variables
Chapter 11. Multilevel Modeling for Binary Response Variables
Chapter 12. Multilevel Modeling for Ordinal Response Variables
Chapter 13. Multilevel Modeling for Count Response Variables
Chapter 14. Multilevel Modeling for Nominal Response Variables
Chapter 15. Bayesian Generalized Linear Models
Chapter 16. Bayesian Multilevel Modeling of Categorical Response Variables
-
- 電子書籍
- 御曹司との恋に秘密はつきもの【タテヨミ…
-
- 電子書籍
- I’ll be a perfect w…
-
- 電子書籍
- みかづきマーチ 分冊版 8 アクション…
-
- 電子書籍
- 美肌のために必要なこと(保湿とUVカッ…
-
- 電子書籍
- 蜜猟人朧十三郎 愛染螢 学研M文庫