Health Information Processing. Evaluation Track Papers : 10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings (Communications in Computer and Information Science)

個数:

Health Information Processing. Evaluation Track Papers : 10th China Health Information Processing Conference, CHIP 2024, Fuzhou, China, November 15-17, 2024, Proceedings (Communications in Computer and Information Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 235 p.
  • 言語 ENG
  • 商品コード 9789819642977

Full Description

This book constitutes the refereed proceedings of the 10th China Health Information Processing Conference, CHIP 2024, held in Fuzhou, China, November 15-17, 2024.
The CHIP 2024 Evaluation Track proceedings include 19 full papers which were carefully reviewed and grouped into these topical sections: syndrome differentiation thought in Traditional Chinese Medicine; lymphoma information extraction and automatic coding; and typical case diagnosis consistency.

Contents

.- Syndrome Differentiation Thought in Traditional Chinese Medicine.
.- Overview of the evaluation task for syndrome differentiation thought in traditional Chinese medicine in CHIP2024.
.- Traditional Chinese Medicine Case Analysis System for High-Level Semantic Abstraction: Optimized with Prompt and RAG.
.- A TCM Syndrome Differentiation Thinking Method Based on Chain of Thought and Knowledge Retrieval Augmentation.
.- Fine-Tuning Large Language Models for Syndrome Differentiation in Traditional Chinese Medicine.
.- Iterative Retrieval Augmentation for Syndrome Differentiation via Large Language Models.
.- Lymphoma Information Extraction and Automatic Coding.
.- Benchmark for Lymphoma Information Extraction and Automated Coding.
.- Overview of the Lymphoma Information Extraction and Automatic Coding Evaluation Task in CHIP 2024.
.- Automatic ICD Code Generation for Lymphoma Using Large Language Models.
.- Lymphoma Tumor Coding and Information Extraction: A Comparative Analysis of Large Language Model-based Methods.
.- Leveraging Chain of Thought for Automated Medical Coding of Lymphoma Cases.
.- Harnessing Retrieval-Augmented LLMs for Training-Free Tumor Coding Classification.
.- Hierarchical Information Extraction and Classification of Lymphoma Tumor Codes Based On LLM.
.- Typical Case Diagnosis Consistenc.
.- Benchmark of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- Overview of the Typical Case Diagnosis Consistency Evaluation Task in CHIP2024.
.- The Diagnosis of Typical Medical Cases through Optimized Fine-Tuning of Large Language Models.
.- Utilizing Large Language Models Enhanced by Chain-of-Thought for the Diagnosis of Typical Medical Cases.
.- Assessing Diagnostic Consistency in Clinical Cases: A Fine-Tuned LLM Voting and GPT Error Correction Framework.
.- Typical Medical Case Diagnosis with Voting and Answer Discrimination using Fine-tuned LLM.
.- Reliable Typical Case Diagnosis via Optimized Retrieval-Augmented Generation Techniques.

最近チェックした商品