Federated Learning for Smart Mobility : Towards Secure, Efficient, and Sustainable Transportation system (Springerbriefs in Computer Science)

個数:
  • ポイントキャンペーン

Federated Learning for Smart Mobility : Towards Secure, Efficient, and Sustainable Transportation system (Springerbriefs in Computer Science)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 100 p.
  • 言語 ENG
  • 商品コード 9789819561599

Full Description

Federated Learning for Smart Mobility: Towards Secure, Efficient, and Sustainable Transportation explores how federated learning (FL) reshapes the future of intelligent transportation and the Internet of Things (IoT). As data privacy and communication efficiency become pressing challenges, FL offers a distributed and privacy-preserving paradigm for model training across vehicles, sensors, and edge devices without sharing raw data.

This SpringerBrief provides a concise yet comprehensive overview of FL's role in building next-generation smart mobility systems. It covers the fundamentals of FL and IoT infrastructures, introduces emerging applications in autonomous driving, traffic prediction, and vehicular networks, and presents selected case studies from academia and industry. The book also discusses key technical challenges—including data heterogeneity, system scalability, and privacy protection—and highlights future directions integrating FL with edge intelligence, 6G communication, and blockchain technologies.

Written by active researchers in the fields of federated learning, wireless communication, and intelligent transportation, this book serves as a valuable reference for scientists, graduate students, and professionals in AI, IoT, and smart city development. It bridges theoretical advances with practical insights, guiding readers toward secure, efficient, and sustainable mobility solutions.

Contents

Introduction to Federated Learning for Smart Mobility.- Foundations of FL and IoT Systems.- FL Applications in Smart Mobility.- Case Studies and Research Insights.- Challenges and Future Directions.

最近チェックした商品