Automated Machine Learning for Person Re-Identification (Intelligent Perception and Information Processing)

個数:
  • ポイントキャンペーン

Automated Machine Learning for Person Re-Identification (Intelligent Perception and Information Processing)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 180 p.
  • 言語 ENG
  • 商品コード 9789819534326

Full Description

This book delves into the cutting-edge field of person re-identification (ReID), a critical area within deep learning and computer vision. Addressing key challenges in current ReID models, it presents novel research combining automated machine learning (AutoML) techniques across three core aspects: data augmentation, network architecture, and loss functions.

Readers will discover five innovative methods designed to overcome specific limitations in existing ReID systems. These include automated erasing data augmentation for more effective erased regions, two distinct AutoML approaches for optimizing multi-scale features in both single-branch and multi-branch architectures, and dynamic and static search methods for refining margin-based Softmax losses. The book's strength lies in its detailed exposition of search algorithms, regularization techniques, and reinforcement learning applications, all contributing to highly efficient and performant ReID solutions.

The primary value of this book for readers lies in its comprehensive overview of advanced AutoML strategies tailored for ReID, offering practical insights into developing more robust and accurate models. It provides a structured exploration of complex concepts, empowering researchers and practitioners to push the boundaries of their own work. This book is an essential resource for researchers, graduate students, and engineers in computer vision, machine learning, and artificial intelligence, particularly those focused on person re-identification and automated deep learning.

Contents

Introduction.- Automated Erasing Data Augmentation for Person Re-Identification.- Learning Auto-Scale Representations for Person Re-Identification.- Searching for A Multi-Branch ConvNet for Person Re-Identification.- Dynamic Loss Function Search for Person Re-Identification.- Searching Static Generalized Margin-based Softmax Loss Function for Person Re-identification.- Conclusion and Future Work.

最近チェックした商品