Smart Meter Data Analytics : Electricity Consumer Behavior Modeling, Aggregation, and Forecasting

個数:

Smart Meter Data Analytics : Electricity Consumer Behavior Modeling, Aggregation, and Forecasting

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 293 p.
  • 言語 ENG
  • 商品コード 9789811526268

Full Description

This book aims to make the best use of fine-grained smart meter data to process and translate them into actual information and incorporated into consumer behavior modeling and distribution system operations. It begins with an overview of recent developments in smart meter data analytics. Since data management is the basis of further smart meter data analytics and its applications, three issues on data management, i.e., data compression, anomaly detection, and data generation, are subsequently studied. The following works try to model complex consumer behavior. Specific works include load profiling, pattern recognition, personalized price design, socio-demographic information identification, and household behavior coding. On this basis, the book extends consumer behavior in spatial and temporal scale. Works such as consumer aggregation, individual load forecasting, and aggregated load forecasting are introduced. We hope this book can inspire readers to define new problems, apply novel methods, and obtain interesting results with massive smart meter data or even other monitoring data in the power systems.

Contents

Overview for Smart Meter Data Analytics.- Smart Meter Data Compression Based on Load Feature Identification.- A Combined Data-Driven Approach for Electricity Theft Detection.- GAN-based Model for Residential Load Generation.- Ensemble Clustering for Individual Electricity Consumption Patterns Extraction.- Sparse and Redundant Representation-Based Partial Usage Pattern Extraction.- Data-Driven Personalized Price Design in Retail Market Using Smart Meter Data.- Deep Learning-Based Socio-demographic Information Identification.- Cross-domain Feature Selection and Coding for Household Energy Behavior.- Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications.- Enhancing Short-term Probabilistic Residential Load Forecasting with Quantile LSTM.- An Ensemble Forecasting Method for the Aggregated Load With Subprofiles.- Prospects of Future Research Issues on Smart Meter Data Analytics.

最近チェックした商品