Handbook of Metric Fixed Point Theory

個数:

Handbook of Metric Fixed Point Theory

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 708 p.
  • 言語 ENG
  • 商品コード 9789048157334
  • DDC分類 515

Full Description

Metric fixed point theory encompasses the branch of fixed point theory which metric conditions on the underlying space and/or on the mappings play a fundamental role. In some sense the theory is a far-reaching outgrowth of Banach's contraction mapping principle. A natural extension of the study of contractions is the limiting case when the Lipschitz constant is allowed to equal one. Such mappings are called nonexpansive. Nonexpansive mappings arise in a variety of natural ways, for example in the study of holomorphic mappings and hyperconvex metric spaces.
Because most of the spaces studied in analysis share many algebraic and topological properties as well as metric properties, there is no clear line separating metric fixed point theory from the topological or set-theoretic branch of the theory. Also, because of its metric underpinnings, metric fixed point theory has provided the motivation for the study of many geometric properties of Banach spaces. The contents of this Handbook reflect all of these facts.
The purpose of the Handbook is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The goal is to provide information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers.

Contents

1 Contraction mappings and extensions.- 2 Examples of fixed point free mappings.- 3 Classical theory of nonexpansive mappings.- 4 Geometrical background of metric fixed point theory.- 5 Some moduli and constants related to metric fixed point theory.- 6 Ultra-methods in metric fixed point theory.- 7 Stability of the fixed point property for nonexpansive mappings.- 8 Metric fixed point results concerning measures of noncompactness.- 9 Renormings of l1 and c0 and fixed point properties.- 10 Nonexpansive mappings: boundary/inwardness conditions and local theory.- 11 Rotative mappings and mappings with constant displacement.- 12 Geometric properties related to fixed point theory in some Banach function lattices.- 13 Introduction to hyperconvex spaces.- 14 Fixed points of holomorphic mappings: a metric approach.- 15 Fixed point and non-linear ergodic theorems for semigroups of non-linear mappings.- 16 Generic aspects of metric fixed point theory.- 17 Metric environment of the topological fixed point theorems.- 18 Order-theoretic aspects of metric fixed point theory.- 19 Fixed point and related theorems for set-valued mappings.

最近チェックした商品