Fundamentals of Convex Analysis : Duality, Separation, Representation, and Resolution

個数:
  • ポイントキャンペーン

Fundamentals of Convex Analysis : Duality, Separation, Representation, and Resolution

  • ウェブストア価格 ¥22,609(本体¥20,554)
  • Springer(2010/12発売)
  • 外貨定価 US$ 109.99
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 1,025pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 324 p.
  • 言語 ENG
  • 商品コード 9789048142712
  • DDC分類 516

Full Description

Fundamentals of Convex Analysis offers an in-depth look at some of the fundamental themes covered within an area of mathematical analysis called convex analysis. In particular, it explores the topics of duality, separation, representation, and resolution. The work is intended for students of economics, management science, engineering, and mathematics who need exposure to the mathematical foundations of matrix games, optimization, and general equilibrium analysis. It is written at the advanced undergraduate to beginning graduate level and the only formal preparation required is some familiarity with set operations and with linear algebra and matrix theory. Fundamentals of Convex Analysis is self-contained in that a brief review of the essentials of these tool areas is provided in Chapter 1. Chapter exercises are also provided.
Topics covered include: convex sets and their properties; separation and support theorems; theorems of the alternative; convex cones; dual homogeneous systems; basic solutions and complementary slackness; extreme points and directions; resolution and representation of polyhedra; simplicial topology; and fixed point theorems, among others. A strength of this work is how these topics are developed in a fully integrated fashion.

Contents

1. Preliminary Mathematics.- 1.1. Vector Spaces and Subspaces.- 1.2. The Solution Set of a System of Simultaneous Linear Equations.- 1.3. Point-set Theory: Topological Properties of Rn.- 1.4. Hyperplanes and Half-planes (-spaces).- 2. Convex Sets in Rn.- 2.1. Convex Sets.- 2.2. Convex Combination.- 2.3. Convex Hull.- 3. Separation and Support Theorems.- 3.1. Hyperplanes and Half-planes Revisited.- 3.2. Existence of Separating and Supporting Hyperplanes.- 3.3. Separation Renders Disjoint Alternatives.- 4. Convex Cones in Rn.- 4.1. Convex Cones.- 4.2. Finite Cones.- 4.3. Conical Hull.- 4.4. Extreme Vectors, Half-lines, and Half-spaces.- 4.5. Extreme Solutions of Homogeneous Linear Inequalities.- 4.6. Sum Cone and Intersection Cone Equivalence.- 4.7. Additional Duality Results for Finite Cones.- 4.8. Separation of Cones.- 5. Existence Theorems for Linear Systems.- 5.1. Dual Homogeneous Linear Relations.- 5.2. Existence Theorems.- 6. Theorems of the Alternative for Linear Systems.- 6.1. The Structure of a Theorem of the Alternative.- 6.2. Theorems of the Alternative.- 6.3. Homogeneous Inequalities/Equalities Under Convex Combination.- 7. Basic Solutions and Complementary Slackness in Pairs of Dual Systems.- 7.1. Basic Solutions to Linear Equalities.- 7.2. Moving From One Basic (Feasible) Solution to Another.- 7.3. Complementary Slackness in Pairs of Dual Systems.- 8. Extreme Points and Directions for Convex Sets.- 8.1. Extreme Points and Directions for General Convex Sets.- 8.2. Convex Hulls Revisited.- 8.3. Faces of Polyhedral Convex Sets: Extreme Points, Facets, and Edges.- 8.4. Extreme Point Representation for Polyhedral Convex Sets.- 8.5. Directions for Polyhedral Convex Sets.- 8.6. Combined Extreme Point and Extreme Direction Representation for Polyhedral Convex Sets.-8.7. Resolution of Convex Polyhedra.- 8.8. Separation of Convex Polyhedra.- 9. Simplicial Topology and Fixed Point Theorems.- 9.1. Simplexes.- 9.2. Simplicial Decomposition and Subdivision.- 9.3. Simplicial Mappings and Labeling.- 9.4. The Existence of Fixed Points.- 9.5. Fixed Points of Compact Point-to-Point Functions.- 9.6. Fixed Points of Point-to-Set Functions.- Appendix: Continuous and Hemicontinuous Functions.- References.- Notation Index.

最近チェックした商品