PyTorch für Deep Learning : Anwendungen für Bild-, Ton- und Textdaten entwickeln und deployen (Animals) (2020. XXII, 250 S. 24 cm)

個数:

PyTorch für Deep Learning : Anwendungen für Bild-, Ton- und Textdaten entwickeln und deployen (Animals) (2020. XXII, 250 S. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783960091349

Description


(Text)
Der praktische Einstieg in PyTorch Lernen Sie, neuronale Netze zu erstellen und sie für verschiedene Datentypen zu trainieren Das Buch deckt den gesamten Entwicklungszyklus von Deep-Learning-Anwendungen ab: Vom Erstellen über das Debuggen bis zum Deployen Mit Use Cases, die zeigen, wie PyTorch bei führenden Unternehmen eingesetzt wird
Mit diesem Praxisbuch meistern Sie die Methoden des Deep Learning, einer Teildisziplin des Machine Learning, die die Welt um uns herum verändert. Machen Sie sich mit PyTorch, dem populären Python-Framework von Facebook, vertraut, und lernen Sie Schlüsselkonzepte und neueste Techniken kennen, um eigene neuronale Netze zu entwickeln.

Ian Pointer zeigt Ihnen zunächst, wie Sie PyTorch in einer Cloud-basierten Umgebung einrichten. Er führt Sie dann durch die einzelnen Schritte der Entwicklung von neuronalen Architekturen, um typische Anwendungen für Bilder, Ton, Text und andere Datenformate zu erstellen. Er erläutert auch das innovative Konzept des Transfer Learning und das Debuggen der Modelle. Sie erfahren zudem, wie Sie Ihre Deep-Learning-Anwendungen in den Produktiveinsatz bringen.

Aus dem Inhalt:
Ergründen Sie modernste Modelle für das Natural Language Processing, die mit umfangreichen Textkorpora wie dem Wikipedia-Datensatz trainiert wurden Verwenden Sie das PyTorch-Paket torchaudio, um Audiodateien mit einem neuronalen Konvolutionsmodell zu klassifizieren Lernen Sie, wie man Transfer Learning auf Bilder anwendet Debuggen Sie PyTorch-Modelle mithilfe von TensorBoard und Flammendiagrammen Deployen Sie PyTorch-Anwendungen im Produktiveinsatz in Docker-Containern und Kubernetes-Clustern, die in der Google Cloud laufen Erkunden Sie PyTorch-Anwendungsfälle von führenden Unternehmen
Für die deutsche Ausgabe wurde das Buch in Zusammenarbeit mit Ian Pointer von Marcus Fraaß aktualisiert und um einige Themen erweitert.

(Author portrait)
Ian Pointer ist Data Engineer. Er hat sich auf Lösungen für Fortune-100-Kunden spezialisiert, die auf Methoden des Machine Learnings (insbesondere Deep Learning) basieren. Ian arbeitet derzeit bei Lucidworks, wo er sich innovativen NLP-Anwendungen und dem Engineering widmet.

最近チェックした商品