Nonobtuse Meshes with Guaranteed Angle Bounds (2008. 100 S. 220 mm)

個数:

Nonobtuse Meshes with Guaranteed Angle Bounds (2008. 100 S. 220 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 100 p.
  • 商品コード 9783836487887

Description


(Text)
High-quality mesh representations of 3D objects are useful in many applications ranging from computer graphics to mathematical simulation. We present a novel method to generate triangular meshes with a guaranteed face angle bound of [30, 90]. The strategy is to first remesh a 2-manifold, open or closed, mesh into a rough approximate mesh that respects the proposed angle bounds. This is achieved by a novel extension to the Marching Cubes algorithm. Next, we perform an iterative constrained optimization, along with constrained Laplacian smoothing, to arrive at a close approximation of the input mesh. A constrained mesh decimation algorithm is then carried out to produce a hierarchy of coarse meshes where the angle bounds are maintained. We demonstrate the quality of our work through several examples.
(Author portrait)
Yung San Li, John John Y.S. Li has earned his undergraduate and master degree with first class honour in Computing Science at Simon Fraser University in Vancouver, Canada. His research interest is in geometry processing. He has published a short paper at the Eurographics Symposium on Geometry Processing in 2006. Currently, he is employed at Slant Six Games.

最近チェックした商品