Übungsaufgaben zur Analysis (Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte) (Nachdr. 2011. 164 S. 157 S. 240 mm)

個数:

Übungsaufgaben zur Analysis (Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte) (Nachdr. 2011. 164 S. 157 S. 240 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 157 p.
  • 言語 GER
  • 商品コード 9783835100664

Full Description

Diese bewährte Aufgabensammlung für Ingenieure und Naturwissenschaftler wird seit vielen Jahren sowohl im Direktstudium als auch im Fernstudium an Universitäten und Fachhochschulen verwendet. Um den Preis des Buches für Studierende noch günstiger zu gestalten, wurden nun erstmals beide Bände in einem Band zusammengefasst. Neben innermathematischen Problemstellungen findet der Leser auch einfache naturwis­ senschaftliche, technische und ökonomische Sachverhalte. Bei der Erarbeitung dieses Übungsbandes wurden die Erfahrungen aus den Mathematik­ Lehrveranstaltungen an der Technischen Universität Dresden und an anderen Hochschulen genutzt. Aufgaben mit etwas höherem Schwierigkeitsgrad oder umfangreicherem Rechenaufwand sind mit einem Stern gekennzeichnet. Unser besonderer Dank gilt den Herren Dipl.-Math. Helmut Ebmeyer (Dresden, Mitarbeit bei den Abschnitten 1.-6.,11.-13. und 17.-21.) und Dr. lng. Ralf Kuhrt (Berlin, Mitarbeit bei den Abschnitten 7.-10., 14.-16. und 22.-26.). Auch weiterhin sind wir für Hinweise und Vorschläge, die der Verbesserung der Aufga­ bensammlung dienen, stets dankbar. Dresden, Oktober 2005 H.Wenzel G. Heinrich Inhalt 1. Logik. ......... ....... ...... ................. ........................... 9 2. Beweisprinzipien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 10 . . . . . . . . . . . . . . . . 3. Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11 . . . . . . . . . . . . . . . . . . . 4. Kombinatorik ............................................................ 14 5. Mengen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 17 . . . . . . . . . . . . . . . . . . . 6. Funktionen. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 18 . . . . . . . . . . . . . . . . . . 7. Zahlenfolgen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 25 . . . . . . . . . . . . . . . . . 8. Grenzwerte und Stetigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 26 . . . . . . . . . . . . . . 9. Ableitungen ............................................................. 27 10. Anwendung des Ableitungsbegriffs . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 30 . . . . . . . . . . . 11. Das unbestimmte Integral .................................................. 34 12. Das bestimmte Integral .................................................... 37 13. Uneigentliche Integrale .................................................... 43 14. Unendliche Reihen mit konstanten Gliedern. . . . . . . . . . . . . . . . . . . . . . . .. . . 45 . . . . . . . . 15. Potenzreihen ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 46 . . . . . . . . . . . . 16. Fourierreihen und Fourierintegrale . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 49 . . . . . . . . . . . 17. Funktionen mehrerer unabhängiger Variabler, partielle Ableitungen und totales Differential ........................................................ 53 18. Implizite Funktionen, der Satz von Taylor und Extremwertaufgaben . . . . . . . . . . .. . . 60 . .

Contents

1. Logik.- 2. Beweisprinzipien.- 3. Zahlen.- 4. Kombinatorik.- 5. Mengen.- 6. Funktionen.- 7. Zahlenfolgen.- 8. Grenzwerte und Stetigkeit.- 9. Ableitungen.- 10. Anwendung des Ableitungsbegriffs.- 11. Das unbestimmte Integral.- 12. Das bestimmte Integral.- 13. Uneigentliche Integrale.- 14. Unendliche Reihen mit konstanten Gliedern.- 15. Potenzreihen.- 16. Fourierreihen und Fourierintegrale.- 17. Funktionen mehrerer unabhängiger Variabler, partielle Ableitungen und totales Differential.- 18. Implizite Funktionen, der Satz von Taylor und Extremwertaufgaben.- 19. Skalare Felder und Vektorfelder.- 20. Parameterintegrale und Doppelintegrale — Integrale über ebene Bereiche.- 21. Integrale über räumliche Bereiche.- 22. Kurven- und Oberflächenintegrale.- 23. Integralsätze.- 24. Gewöhnliche Differentialgleichungen 1. Ordnung.- 25. Gewöhnliche Differentialgleichungen höherer Ordnung.- 26. Systeme von gewöhnlichen Differentialgleichungen.- Lösungen und Lösungshinweise.

最近チェックした商品