作用素論における極限作用素<br>Limit Operators and Their Applications in Operator Theory (Operator Theory, Advances and Applications Vol.150) (2004. 408 p.)

個数:

作用素論における極限作用素
Limit Operators and Their Applications in Operator Theory (Operator Theory, Advances and Applications Vol.150) (2004. 408 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 408 p.
  • 商品コード 9783764370817

Full Description

This text has two goals. It describes a topic: band and band-dominated operators and their Fredholm theory, and it introduces a method to study this topic: limit operators. Band-dominated operators. Let H = [2(Z) be the Hilbert space of all squared summable functions x : Z -+ Xi provided with the norm 2 2 X IIxl1 :=L I iI . iEZ It is often convenient to think of the elements x of [2(Z) as two-sided infinite sequences (Xi)iEZ. The standard basis of [2(Z) is the family of sequences (ei)iEZ where ei = (. . . ,0,0, 1,0,0, . . . ) with the 1 standing at the ith place. Every bounded linear operator A on H can be described by a two-sided infinite matrix (aij)i,jEZ with respect to this basis, where aij = (Aej, ei)' The band operators on H are just the operators with a matrix representation of finite band-width, i. e. , the operators for which aij = 0 whenever Ii - jl > k for some k. Operators which are in the norm closure ofthe algebra of all band operators are called band-dominated. Needless to say that band and band­ dominated operators appear in numerous branches of mathematics. Archetypal examples come from discretizations of partial differential operators. It is easy to check that every band operator can be uniquely written as a finite sum L dkVk where the d are multiplication operators (i. e.

Contents

1 Limit Operators.- 1.1 Generalized compactness, generalized convergence.- 1.2 Limit operators.- 1.3 Algebraization.- 1.4 Comments and references.- 2 Fredholmness of Band-dominated Operators.- 2.1 Band-dominated operators.- 2.2 P-Fredholmness of rich band-dominated operators.- 2.3 Local P-Fredholmness: elementary theory.- 2.4 Local P-Fredholmness: advanced theory.- 2.5 Operators in the discrete Wiener algebra.- 2.6 Band-dominated operators with special coefficients.- 2.7 Indices of Fredholm band-dominated operators.- 2.8 Comments and references.- 3 Convolution Type Operators on $${\mathbb{R}^N}$$.- 3.1 Band-dominated operators on $${L^p}\left( {{\mathbb{R}^N}} \right)$$.- 3.2 Operators of convolution.- 3.3 Fredholmness of convolution type operators.- 3.4 Compressions of convolution type operators.- 3.5 A Wiener algebra of convolution-type operators.- 3.6 Comments and references.- 4 Pseudodifferential Operators.- 4.1 Generalities and notation.- 4.2 Bi-discretization of operators on $${L^2}\left( {{\mathbb{R}^N}} \right)$$.- 4.3 Fredholmness of pseudodifferential operators.- 4.4 Applications.- 4.5 Mellin pseudodifferential operators.- 4.6 Singular integrals over Carleson curves with Muckenhoupt weights.- 4.7 Comments and references.- 5 Pseudodifference Operators.- 5.1 Pseudodifference operators.- 5.2 Fredholmness of pseudodifference operators.- 5.3 Fredholm properties of pseudodifference operators on weighted spaces.- 5.4 Slowly oscillating pseudodifference operators.- 5.5 Almost periodic pseudodifference operators.- 5.6 Periodic pseudodifference operators.- 5.7 Semi-periodic pseudodifference operators.- 5.8 Discrete Schrödinger operators.- 5.9 Comments and references.- 6 Finite Sections of Band-dominated Operators.- 6.1 Stability of the finite section method.- 6.2Finite sections of band-dominated operators on $${\mathbb{Z}^1}$$ and $${\mathbb{Z}^2}$$.- 6.3 Spectral approximation.- 6.4 Fractality of approximation methods.- 6.5 Comments and references.- 7 Axiomatization of the Limit Operators Approach.- 7.1 An axiomatic approach to the limit operators method.- 7.2 Operators on homogeneous groups.- 7.3 Fredholm criteria for convolution type operators with shift.- 7.4 Comments and references.