Differential Galois Theory and Lie-Vessiot Systems : Analytic and Algebraic Theory of Lie-Vessiot Systemsand Superposition Laws for Ordinary DifferentialEquations (2008. 192 S. 220 mm)

個数:

Differential Galois Theory and Lie-Vessiot Systems : Analytic and Algebraic Theory of Lie-Vessiot Systemsand Superposition Laws for Ordinary DifferentialEquations (2008. 192 S. 220 mm)

  • オンデマンド(OD/POD)版です。キャンセルは承れません。

  • オンデマンド(OD/POD)版です。キャンセルは承れません。
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 192 p.
  • 商品コード 9783639096019

Description


(Text)
The purpose of this work is to develop a differentialGalois theory for differential equations admittingsuperposition laws. First, we characterize thosedifferential equations in terms of Lie group actions,generalizing some classical results due to S. Lie. Wecall them Lie-Vessiot systems. Then, we develop adifferential Galois theory for Lie-Vessiot systemsboth in the complex analytic and algebraic contexts.In the complex analytic context we give a theory thatgeneralizes the tannakian approach to the classicalPicard-Vessiot theory. In the algebraic case, westudy differential equations under the formalism ofdifferential algebra. We prove that algebraicLie-Vessiot systems are solvable in strongly normalextensions. Therefore, Lie-Vessiot systems aredifferential equations attached to the Kolchin'sdifferential Galois theory.
(Text)
The purpose of this work is to develop a differential
Galois theory for differential equations admitting
superposition laws. First, we characterize those
differential equations in terms of Lie group actions,
generalizing some classical results due to S. Lie. We
call them Lie-Vessiot systems. Then, we develop a
differential Galois theory for Lie-Vessiot systems
both in the complex analytic and algebraic contexts.
In the complex analytic context we give a theory that
generalizes the tannakian approach to the classical
Picard-Vessiot theory. In the algebraic case, we
study differential equations under the formalism of
differential algebra. We prove that algebraic
Lie-Vessiot systems are solvable in strongly normal
extensions. Therefore, Lie-Vessiot systems are
differential equations attached to the Kolchin''s
differential Galois theory.
(Author portrait)
Blázquez-Sanz David David Blázquez Sanz is a Spanish-American mathematician. Heobtained his degree in Universidad de Salamanca and his doctoratein Universitat Politècnica de Catalunya, under the supervision ofJuan J. Morales Ruiz. Nowadays he is professor in Sergio ArboledaUniversity, in Bogotá, Colombia. He also studies and teacheschinese martial arts.

最近チェックした商品