Transformation Groups in Differential Geometry (Classics in Mathematics) -- Paperback (REPRINT OF)

個数:

Transformation Groups in Differential Geometry (Classics in Mathematics) -- Paperback (REPRINT OF)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    ウクライナ情勢悪化・新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。詳しくはこちらをご確認ください。
    海外からのお取り寄せの場合、弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783540586593

Full Description

Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc­ tures. All geometric structures are not created equal; some are creations of ‾ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo­ metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec­ tures I gave in Tokyo and Berkeley in 1965.

Contents

I. Automorphisms of G-Structures.- 1. G -Structures.- 2. Examples of G-Structures.- 3. Two Theorems on Differentiable Transformation Groups.- 4. Automorphisms of Compact Elliptic Structures.- 5. Prolongations of G-Structures.- 6. Volume Elements and Symplectic Structures.- 7. Contact Structures.- 8. Pseudogroup Structures, G-Structures and Filtered Lie Algebras.- II. Isometries of Riemannian Manifolds.- 1. The Group of Isometries of a Riemannian Manifold.- 2. Infinitesimal Isometries and Infinitesimal Affine Transformations.- 3. Riemannian Manifolds with Large Group of Isometries.- 4. Riemannian Manifolds with Little Isometries.- 5. Fixed Points of Isometries.- 6. Infinitesimal Isometries and Characteristic Numbers.- III. Automorphisms of Complex Manifolds.- 1. The Group of Automorphisms of a Complex Manifold.- 2. Compact Complex Manifolds with Finite Automorphism Groups.- 3. Holomorphic Vector Fields and Holomorphic 1-Forms.- 4. Holomorphic Vector Fields on Kahler Manifolds.- 5. Compact Einstein-Kähler Manifolds.- 6. Compact Kähler Manifolds with Constant Scalar Curvature.- 7. Conformal Changes of the Laplacian.- 8. Compact Kähler Manifolds with Nonpositive First Chern Class.- 9. Projectively Induced Holomorphic Transformations.- 10. Zeros of Infinitesimal Isometries.- 11. Zeros of Holomorphic Vector Fields.- 12. Holomorphic Vector Fields and Characteristic Numbers.- IV. Affine, Conformal and Projective Transformations.- 1. The Group of Affine Transformations of an Affinely Connected Manifold.- 2. Affine Transformations of Riemannian Manifolds.- 3. Cartan Connections.- 4. Projective and Conformal Connections.- 5. Frames of Second Order.- 6. Projective and Conformal Structures.- 7. Projective and Conformal Equivalences.- Appendices.- 1. Reductions of 1-Forms and Closed 2-Forms.- 2. Some Integral Formulas.- 3. Laplacians in Local Coordinates.