Mathematical Analysis Pt.1 (Universitext) (2004. XVIII, 574 p. w. figs. 24 cm)

個数:

Mathematical Analysis Pt.1 (Universitext) (2004. XVIII, 574 p. w. figs. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Hardcover:ハードカバー版/ページ数 572 p.
  • 商品コード 9783540403869

基本説明

Translation of the 4th revised Russian edition, 2002. Contents: Some General Mathematical Concepts and Notation.- The Real Numbers.- Limits.- Continuous Functions.- Differential Calculus.- Integration.- and more.

Full Description


This softcover edition of a very popular two-volume work presents a thorough first course in analysis, leading from real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, elliptic functions and distributions. Especially notable in this course is the clearly expressed orientation toward the natural sciences and its informal exploration of the essence and the roots of the basic concepts and theorems of calculus. Clarity of exposition is matched by a wealth of instructive exercises, problems and fresh applications to areas seldom touched on in real analysis books. The first volume constitutes a complete course on one-variable calculus along with the multivariable differential calculus elucidated in an up-to-day, clear manner, with a pleasant geometric flavor.

Contents

CONTENTS OF VOLUME I Prefaces Preface to the English edition Prefaces to the fourth and third editions Preface to the second edition From the preface to the first edition 1. Some General Mathematical Concepts and Notation 1.1 Logical symbolism 1.1.1 Connectives and brackets 1.1.2 Remarks on proofs 1.1.3 Some special notation 1.1.4 Concluding remarks 1.1.5 Exercises 1.2 Sets and elementary operations on them 1.2.1 The concept of a set 1.2.2 The inclusion relation 1.2.3 Elementary operations on sets 1.2.4 Exercises 1.3 Functions 1.3.1 The concept of a function (mapping) 1.3.2 Elementary classification of mappings 1.3.3 Composition of functions. Inverse mappings 1.3.4 Functions as relations. The graph of a function 1.3.5 Exercises 1.4 Supplementary material 1.4.1 The cardinality of a set (cardinal numbers) 1.4.2 Axioms for set theory 1.4.3 Set-theoretic language for propositions 1.4.4 Exercises 2. The Real Numbers 2.1 Axioms and properties of real numbers 2.1.1 Definition of the set of real numbers 2.1.2 Some general algebraic properties of real numbers a. Consequences of the addition axioms b. Consequences of the multiplication axioms c. Consequences of the axiom connecting addition and multiplication d. Consequences of the order axioms e. Consequences of the axioms connecting order with addition and multiplication 2.1.3 The completeness axiom. Least upper bound 2.2 Classes of real numbers and computations 2.2.1 The natural numbers. Mathematical induction a. Definition of the set of natural numbers b. The principle of mathematical induction 2.2.2 Rational and irrational numbers a. The integers b. The rational numbers c. The irrational numbers 2.2.3 The principle of Archimedes Corollaries 2.2.4 Geometric interpretation. Computational aspects a. The real line b. Defining a number by successive approximations c. The positional computation system 2.2.5 Problems and exercises 2.3 Basic lemmas on completeness