Learning and Adaption in Multi-agent Systems : First International Workshop, Lamas 2005, Utrecht, the Netherlands, July 25, 2005, Revised Selected Pap

個数:

Learning and Adaption in Multi-agent Systems : First International Workshop, Lamas 2005, Utrecht, the Netherlands, July 25, 2005, Revised Selected Pap

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 215 p.
  • 言語 ENG
  • 商品コード 9783540330530
  • DDC分類 004

基本説明

Subseries: Lecture Notes in Artificial Intelligence.

Full Description

This book contains selected and revised papers of the International Workshop on Lea- ing and Adaptation in Multi-Agent Systems (LAMAS 2005), held at the AAMAS 2005 Conference in Utrecht, The Netherlands, July 26. An important aspect in multi-agent systems (MASs) is that the environment evolves over time, not only due to external environmental changes but also due to agent int- actions. For this reason it is important that an agent can learn, based on experience, and adapt its knowledge to make rational decisions and act in this changing environment autonomously. Machine learning techniques for single-agent frameworks are well established. Agents operate in uncertain environments and must be able to learn and act - tonomously. This task is, however, more complex when the agent interacts with other agents that have potentially different capabilities and goals. The single-agent case is structurally different from the multi-agent case due to the added dimension of dynamic interactions between the adaptive agents. Multi-agent learning, i.e., the ability of the agents to learn how to cooperate and compete, becomes crucial in many domains. Autonomous agents and multi-agent systems (AAMAS) is an emerging multi-disciplinary area encompassing computer science, software engineering, biology, as well as cognitive and social sciences. A t- oretical framework, in which rationality of learning and interacting agents can be - derstood, is still under development in MASs, although there have been promising ?rst results.

Contents

An Overview of Cooperative and Competitive Multiagent Learning.- Multi-robot Learning for Continuous Area Sweeping.- Learning Automata as a Basis for Multi Agent Reinforcement Learning.- Learning Pareto-optimal Solutions in 2x2 Conflict Games.- Unifying Convergence and No-Regret in Multiagent Learning.- Implicit Coordination in a Network of Social Drivers: The Role of Information in a Commuting Scenario.- Multiagent Traffic Management: Opportunities for Multiagent Learning.- Dealing with Errors in a Cooperative Multi-agent Learning System.- The Success and Failure of Tag-Mediated Evolution of Cooperation.- An Adaptive Approach for the Exploration-Exploitation Dilemma and Its Application to Economic Systems.- Efficient Reward Functions for Adaptive Multi-rover Systems.- Multi-agent Relational Reinforcement Learning.- Multi-type ACO for Light Path Protection.

最近チェックした商品