Numerical Solution of Elliptic Differential Equations by Reduction to the Interface (Lecture Notes in Computational Science and Engineering Vol.36) (2004. 300 p.)

個数:

Numerical Solution of Elliptic Differential Equations by Reduction to the Interface (Lecture Notes in Computational Science and Engineering Vol.36) (2004. 300 p.)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p.
  • 商品コード 9783540204060

Full Description

This is the first book that deals systematically with the numerical solution of elliptic partial differential equations by their reduction to the interface via the Schur complement. Inheriting the beneficial features of finite element, boundary element and domain decomposition methods, our approach permits solving iteratively the Schur complement equation with linear-logarithmic cost in the number of the interface degrees of freedom. The book presents the detailed analysis of the efficient data-sparse approximation techniques to the nonlocal Poincare-Steklov interface operators associated with the Laplace, biharmonic, Stokes and Lame equations. Another attractive topic are the robust preconditioning methods for elliptic equations with highly jumping, anisotropic coefficients. A special feature of the book is a unified presentation of the traditional iterative substructuring and multilevel methods combined with modern matrix compression techniques applied to the Schur complement on the interface.