原子・分子分光学(第4版)<br>Atomic and Molecular Spectroscopy : Basic Aspects and Practical Applications (Advanced Texts in Physics) (4th ed. 2004. XVIII, 588 p. w. 404 figs. 24 cm)

個数:

原子・分子分光学(第4版)
Atomic and Molecular Spectroscopy : Basic Aspects and Practical Applications (Advanced Texts in Physics) (4th ed. 2004. XVIII, 588 p. w. 404 figs. 24 cm)

  • 提携先の海外書籍取次会社に在庫がございます。通常約3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

  • 提携先の海外書籍取次会社に在庫がございます。通常2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。
  • 【重要:入荷遅延について】
    各国での新型コロナウィルス感染拡大により、洋書・洋古書の入荷が不安定になっています。
    弊社サイト内で表示している標準的な納期よりもお届けまでに日数がかかる見込みでございます。
    申し訳ございませんが、あらかじめご了承くださいますようお願い申し上げます。

  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 588 p.
  • 商品コード 9783540203827

基本説明

A wide-ranging review of modern spectroscopic techniques such as X-ray, photoelectron, optical and laser spectroscopy, and radiofrequency and microwave techniques.

Description


(Short description)

Dieses Lehrbuch gibt einen weitreichenden Überblick über moderne spektroskopische Techniken wie Röntgen- und Laserspektroskopie, photoelektronische, optische Spektroskopie sowie Radiofrequenz- und Mikrowellentechniken. Der Autor behandelt die physikalischen Grundlagen und den Einfluß der Spektroskopie auf unser Verständnis des Aufbaus der Materie, gefolgt von weitreichenden Anwendungen.
(Text)
Atomic and Molecular Spectroscopy is a wide-ranging review of modern spectroscopic techniques such as X-ray, photoelectron, optical and laser spectroscopy, and radiofrequency and microwave techniques. On the fundamental side it focuses on physical principles and the impact of spectroscopy on our understanding of the building blocks of matter, whilein the area of applications particular attention is given to those in chemical analysis, photochemistry, surface characterisation, environmental and medical diagnostics, remote sensing and astrophyscis. This edition also provides the reader with an update on laser cooling and trapping, Bose-Einstein condensation, ultra-fast spectroscopy, high-power laser/matter interaction, satellite-based astronomy and spectroscopic aspects of laser medicine. Important references are also brought up to date.
(Table of content)
1. Introduction.- 2. Atomic Structure.- 3. Molecular Structure.- 4. Radiation and Scattering Processes.- 5. Spectroscopy of Inner Electrons.- 6. Optical Spectroscopy.- 7. Radio-Frequency Spectroscopy.- 8. Lasers.- 9. Laser Spectroscopy.- 10. Laser-Spectroscopic Applications.- Questions and Exercises.- References.
(Review)
From the reviews of the fourth edition:

"The strength of Svanberg's book is in its focus on practical spectroscopy, preferring to illustrate a catalogue of techniques by showcasing real experiments from the literature with detailed descriptions of each backed by appropriate figures and providing the reader with a wealth of references ... to key papers rather than concentrating on heavy mathematical detail. ... continues to be one of a small number of leading texts on the illustration on the practice of A & M spectroscopy." (Dr. J.T. Costello, Contemporary Physics, Vol. 46 (1), 2005)
(Author portrait)

Sune Svanberg is a professor of physics and head of the Atomic Physics Division of the Lund Institute of Technology. He is also the director of the multi-disciplinary Lund Laser Centre at the Lund University. He has extensive research experience in radiofrequency, optical and laser spectroscopy, and in the use of lasers in combustion diagnostics, environmental monitoring, and medical diagnostics and treatment, and is thus in good position to cover the vast scope of the book. Sune Svanberg has coauthored almost 500 papers and trained a large number or undergraduates and graduates in basic and applied atomic and molecular spectroscopy. He served extensively in international organisations and scientific advisory committees. He is a member of five academies and holds three honorary doctor degrees.

Table of Contents

  1. Introduction                                  1  (4)
2. Atomic Structure 5 (26)
2.1 One-Electron Systems 5 (2)
2.2 Alkali Atoms 7 (1)
2.3 Magnetic Effects 8 (2)
2.3.1 Precessional Motion 8 (1)
2.3.2 Spin-Orbit Interaction 9 (1)
2.4 General Many-Electron Systems 10 (7)
2.5 The Influence of External Fields 17 (6)
2.5.1 Magnetic Fields 18 (3)
2.5.2 Electric Fields 21 (2)
2.6 Hyperfine Structure 23 (3)
2.6.1 Magnetic Hyperfine Structure 23 (2)
2.6.2 Electric Hyperfine Structure 25 (1)
2.7 The Influence of External Fields (hfs) 26 (3)
2.8 Isotopic Shifts 29 (2)
3. Molecular Structure 31 (10)
3.1 Electronic Levels 32 (3)
3.2 Rotational Energy 35 (1)
3.3 Vibrational Energy 36 (1)
3.4 Polyatomic Molecules 37 (2)
3.5 Clusters 39 (1)
3.6 Other Molecular Structures 40 (1)
4. Radiation and Scattering Processes 41 (30)
4.1 Resonance Radiation 41 (10)
4.2 Spectra Generated by Dipole 51 (10)
Transitions
4.2.1 Atoms 52 (3)
4.2.2 Molecules 55 (6)
4.3 Rayleigh and Raman Scattering 61 (2)
4.4 Raman Spectra 63 (2)
4.4.1 Vibrational Raman Spectra 63 (1)
4.4.2 Rotational Raman Spectra 64 (1)
4.4.3 Vibrational-Rotational Raman 64 (1)
Spectra
4.5 Mie Scattering 65 (1)
4.6 Atmospheric Scattering Phenomena 66 (3)
4.7 Comparison Between Different 69 (1)
Radiation and Scattering Processes
4.8 Collision-Induced Processes 70 (1)
5. Spectroscopy of Inner Electrons 71 (26)
5.1 X-Ray Spectroscopy 71 (14)
5.1.1 X-Ray Emission Spectroscopy 73 (6)
5.1.2 X-Ray Absorption Spectroscopy 79 (3)
5.1.3 X-Ray Imaging Applications 82 (3)
5.2 Photoelectron Spectroscopy 85 (10)
5.2.1 XPS Techniques and Results 87 (3)
5.2.2 Chemical Shifts 90 (5)
5.3 Auger Electron Spectroscopy 95 (2)
6. Optical Spectroscopy 97 (90)
6.1 Light Sources 97 (17)
6.1.1 Line Light Sources 98 (8)
6.1.2 Continuum Light Sources 106(2)
6.1.3 Synchrotron Radiation 108(5)
6.1.4 Natural Radiation Sources 113(1)
6.2 Spectral Resolution Instruments 114(14)
6.2.1 Prism Spectrometers 114(3)
6.2.2 Grating Spectrometers 117(4)
6.2.3 The Fabry-P駻ot Interferometer 121(5)
6.2.4 The Fourier Transform Spectrometer 126(2)
6.3 Detectors 128(6)
6.4 Optical Components and Materials 134(14)
6.4.1 Interference Filters and Mirrors 134(4)
6.4.2 Absorption Filters 138(3)
6.4.3 Polarizers 141(2)
6.4.4 Optical Materials 143(1)
6.4.5 Influence of the Transmission 144(4)
Medium
6.5 Optical Methods of Chemical Analysis 148(14)
6.5.1 The Beer-Lambert Law 149(2)
6.5.2 Atomic Absorption/Emission 151(4)
Spectrophotometry
6.5.3 Burners, Flames, Sample 155(1)
Preparation and Measurements
6.5.4 Modified Methods of Atomization 156(1)
6.5.5 Multi-Element Analysis 157(1)
6.5.6 Molecular Spectrophotometry 158(2)
6.5.7 Raman Spectroscopy 160(2)
6.6 Optical Remote Sensing 162(14)
6.6.1 Atmospheric Monitoring with 164(7)
Passive Techniques
6.6.2 Land and Water Measurements with 171(5)
Passive Techniques
6.7 Astrophysical Spectroscopy 176(11)
7. Radio-Frequency Spectroscopy 187(40)
7.1 Resonance Methods 187(31)
7.1.1 Magnetic Resonance 187(2)
7.1.2 Atomic-Beam Magnetic Resonance 189(8)
7.1.3 Optical Pumping 197(3)
7.1.4 Optical Double Resonance 200(3)
7.1.5 Level-Crossing Spectroscopy 203(6)
7.1.6 Resonance Methods for Liquids and 209(9)
Solids
7.2 Microwave Radiometry 218(4)
7.3 Radio Astronomy 222(5)
8. Lasers 227(60)
8.1 Basic Principles 227(3)
8.2 Coherence 230(1)
8.3 Resonators and Mode Structure 231(5)
8.4 Fixed-Frequency Lasers 236(10)
8.4.1 The Ruby Laser 236(2)
8.4.2 Four-Level Lasers 238(3)
8.4.3 Pulsed Gas Lasers 241(2)
8.4.4 The He-Ne Laser 243(1)
8.4.5 Gaseous Ion Lasers 244(2)
8.5 Tunable Lasers 246(16)
8.5.1 Dye Lasers 246(9)
8.5.2 Colour-Centre Lasers 255(1)
8.5.3 Tunable Solid-State Lasers 256(1)
8.5.4 Tunable CO2 Lasers 257(2)
8.5.5 Semiconductor Lasers 259(3)
8.6 Nonlinear Optical Phenomena 262(14)
8.7 Ultra-short and Ultra-high-Power 276(11)
Laser Pulse Generation
8.7.1 Short-Pulse Generation by 276(6)
Mode-Locking
8.7.2 Generation of Ultra-high Power 282(5)
Pulses
9. Laser Spectroscopy 287(102)
9.1 Basic Principles 287(7)
9.1.1 Comparison Between Conventional 287(1)
Light Sources and Lasers
9.1.2 Saturation 287(2)
9.1.3 Excitation Methods 289(1)
9.1.4 Detection Methods 290(2)
9.1.5 Laser Wavelength Setting 292(2)
9.2 Doppler-Limited Techniques 294(12)
9.2.1 Absorption Measurements 294(2)
9.2.2 Intracavity Absorption 296(1)
Measurements
9.2.3 Absorption Measurements on 297(1)
Excited States
9.2.4 Level Labelling 298(1)
9.2.5 Two-Photon Absorption Measurements 299(2)
9.2.6 Opto-Galvanic Spectroscopy 301(3)
9.2.7 Single-Atom and Single-Molecule 304(1)
Detection
9.2.8 Opto-Acoustic Spectroscopy 304(2)
9.3 Optical Double-Resonance and 306(5)
Level-Crossing Experiments with Laser
Excitation
9.4 Time-Resolved Atomic and Molecular 311(20)
Spectroscopy
9.4.1 Generation of Short Optical Pulses 312(1)
9.4.2 Measurement Techniques for 312(6)
Optical Transients
9.4.3 Background to Lifetime 318(1)
Measurements
9.4.4 Survey of Methods of Measurement 319(6)
for Radiative Properties
9.4.5 Quantum-Beat Spectroscopy 325(6)
9.5 Ultrafast Spectroscopy 331(8)
9.5.1 Ultrafast Measurement Techniques 332(4)
9.5.2 Molecular Reaction Dynamics 336(2)
(Femtochemistry)
9.5.3 Coherent Control 338(1)
9.6 High-Power Laser Experiments 339(12)
9.6.1 Above Threshold Ionization (ATI) 340(2)
9.6.2 High Harmonic Generation 342(5)
9.6.3 X-Ray Laser Pumping 347(1)
9.6.4 Broadband X-Ray Generation 348(3)
9.6.5 Relativistic Effects and Laser 351(1)
Accelerators
9.6.6 Laser-Nuclear Interactions and 351(1)
Laser-Driven Fusion
9.7 High-Resolution Laser Spectroscopy 351(23)
9.7.1 Spectroscopy on Collimated Atomic 352(7)
and Ionic Beams
9.7.2 Saturation Spectroscopy and 359(9)
Related Techniques
9.7.3 Doppler-Free Two-Photon Absorption 368(6)
9.8 Cooling and Trapping of Ions and Atoms 374(15)
9.8.1 Introduction 374(2)
9.8.2 Ion Traps 376(1)
9.8.3 Basic Laser Cooling in Traps 377(2)
9.8.4 Trapped Ion Spectroscopy 379(1)
9.8.5 Atom Cooling and Trapping 379(3)
9.8.6 Sub-Recoil Cooling 382(2)
9.8.7 Atom Optics 384(1)
9.8.8 Bose-Einstein Condensation and 384(3)
"Atom Lasers"
9.8.9 Ultracold Fermionic Gases 387(2)
10. Laser-Spectroscopic Applications 389(72)
10.1 Diagnostics of Combustion Processes 389(1)
10.1.1 Background 389(1)
10.1.2 Laser-Induced Fluorescence and 392(1)
Related Techniques
10.1.3 Raman Spectroscopy 398(1)
10.1.4 Coherent Anti-Stokes Raman 398(1)
Scattering
10.1.5 Velocity Measurements 403(3)
10.2 Laser Remote Sensing of the Atmosphere 406(1)
10.2.1 Optical Heterodyne Detection 407(1)
10.2.2 Long-Path Absorption Techniques 408(1)
10.2.3 Lidar Techniques 414(11)
10.3 Laser-Induced Fluorescence and Raman 425(1)
Spectroscopy in Liquids and Solids
10.3.1 Hydrospheric Remote Sensing 426(1)
10.3.2 Vegetation Monitoring 429(1)
10.3.3 Monitoring of Surface Layers 430(5)
10.4 Laser-Induced Chemical Processes 435(1)
10.4.1 Laser-Induced Chemistry 435(1)
10.4.2 Laser Isotope Separation 436(5)
10.5 Spectroscopic Aspects of Lasers in 441(1)
Medicine
10.5.1 Thermal Interaction of Laser 441(1)
Light with Tissue
10.5.2 Photodynamic Tumour Therapy 443(1)
10.5.3 Tissue Diagnostics with 447(1)
Laser-Induced Fluorescence
10.5.4 Scattering Spectroscopy and 454(7)
Tissue Transillumination
Questions and Exercises 461(12)
References 473(102)
Index 575