Evolutionäre Algorithmen : Genetische Algorithmen. Strategien und Optimierungsverfahren. Beispielanwendungen (Computational Intelligence) (2004. x, 252 S. X, 252 S. 244 mm)

個数:

Evolutionäre Algorithmen : Genetische Algorithmen. Strategien und Optimierungsverfahren. Beispielanwendungen (Computational Intelligence) (2004. x, 252 S. X, 252 S. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版
  • 商品コード 9783528055707

Description


(Short description)

(Text)
Evolutionäre Algorithmen bilden eine Klasse sehr universeller Werkzeuge zur Lösung von Optimierungsproblemen. Mit diesem Buch lernen Sie alles Wesentliche über dieses spannende Gebiet - ausgehend von den Grundlagen bis hin in die Anwendung. Es geht um Techniken wie genetische Algorithmen, Evolutionsstrategien und genetische Programmierung. Gewinnen Sie ein klares Verständnis der zugrunde liegenden strategischen Arbeitsweise der einzelnen Algorithmen. Dies schafft die Voraussetzung für den effizienten Einsatz der Optimierungsverfahren in der Praxis. Die Beispielanwendungen, insbesondere aus dem Bereich der Optimierung von Fuzzy-Systemen, veranschaulichen und vertiefen die vermittelten Kenntnisse. Ein Buch für Studium und Selbststudium - Ergebnis jahrelanger Tätigkeit in Lehre, Forschung und Anwendung.
(Table of content)
1 Einleitung.- 2 Optimierungsprobleme.- 2.1 Beispiele.- 2.2 Der Suchraum.- 2.3 Die Zielfunktion.- 2.4 Die Struktur des Suchraums und der Zielfunktion.- 2.5 Was ist Optimierung?.- 3 Optimierungsverfahren.- 3.1 Analytische Lösung des Optimierungsproblems.- 3.2 Gradientenverfahren.- 3.3 Newton-Verfahren.- 3.4 Optimierung mit Nebenbedingungen.- 3.5 Tabu-Suche.- 3.6 Greedy-Heuristiken.- 3.7 Hillclimbing.- 3.8 Simulated Annealing.- 3.9 Threshold Accepting.- 3.10 Sintflut-Algorithmus.- 3.11 Ameisenkolonieoptimierung.- 3.12 Grundsätzliche Elemente von Optimierungsstrategien.- 4 Genetische Algorithmen und Optimierung.- 4.1 Biologische Evolution.- 4.2 Kanonische Genetische Algorithmen: Struktur und Operatoren.- 5 Theoretischer Hintergrund.- 5.1 Schema-Theorem und Building-Block-Hypothese.- 5.2 Konvergenzbetrachtungen.- 5.3 Vorzeitige Konvergenz.- 6 Problemangepasste Operatoren und Verfahren.- 6.1 Anwendungsbereich.- 6.2 Kodierung und Startpopulation.- 6.3 Fitnessfunktion.- 6.4 Selektion.- 6.5 Rekombination und Reparaturmechanismen.- 6.6 Mutation.- 6.7 Weitere Aspekte.- 6.8 Evolutionäre Algorithmen zur Optimierung von Flugrouten.- 7 Klassifizierung evolutionärer Algorithmen.- 7.1 Evolutionsstrategien.- 7.2 Evolutionäre Programmierung.- 7.3 Genetische Programmierung.- 7.4 Weitere evolutionäre Algorithmen.- 7.5 Parallele und hybride Ansätze.- 7.6 Lernende Classifier Systeme.- 8 Testumgebungen.- 8.1 Aufbau einer Testumgebung.- 8.2 Funktionen.- 8.3 Kombinatorische Optimierungsprobleme.- 8.4 Strategieentwicklung.- 9 Fuzzy-Systeme.- 9.1 Grundprinzipien.- 9.2 Fuzzy-Mengen.- 9.3 Fuzzy-Regler.- 9.4 Fuzzy-Klassifikatoren.- 9.5 Fuzzy-Clusteranalyse.- 10 Kombinationen evolutionärer Algorithmen mit Fuzzy-Systemen.- 10.1 Fuzzy-Regler-Optimierung: Ein ausführliches Beispiel.- 10.2Optimierung von Fuzzy-Systemen mit evolutionären Algorithmen.- 10.3 Fuzzy-Clustering mit evolutionären Algorithmen.- 10.4 Steuerung evolutionärer Algorithmen mit Fuzzy-Regeln.- A Anhang: Biologische Evolution und evolutionäre Algorithmen.- A.1 Die biologische Evolution.- A. 2 Terminolgie der evolutionären Algorithmen.- B Anhang: NP-Vollständigkeit.

Contents

1 Einleitung.- 2 Optimierungsprobleme.- 2.1 Beispiele.- 2.2 Der Suchraum.- 2.3 Die Zielfunktion.- 2.4 Die Struktur des Suchraums und der Zielfunktion.- 2.5 Was ist Optimierung?.- 3 Optimierungsverfahren.- 3.1 Analytische Lösung des Optimierungsproblems.- 3.2 Gradientenverfahren.- 3.3 Newton-Verfahren.- 3.4 Optimierung mit Nebenbedingungen.- 3.5 Tabu-Suche.- 3.6 Greedy-Heuristiken.- 3.7 Hillclimbing.- 3.8 Simulated Annealing.- 3.9 Threshold Accepting.- 3.10 Sintflut-Algorithmus.- 3.11 Ameisenkolonieoptimierung.- 3.12 Grundsätzliche Elemente von Optimierungsstrategien.- 4 Genetische Algorithmen und Optimierung.- 4.1 Biologische Evolution.- 4.2 Kanonische Genetische Algorithmen: Struktur und Operatoren.- 5 Theoretischer Hintergrund.- 5.1 Schema-Theorem und Building-Block-Hypothese.- 5.2 Konvergenzbetrachtungen.- 5.3 Vorzeitige Konvergenz.- 6 Problemangepasste Operatoren und Verfahren.- 6.1 Anwendungsbereich.- 6.2 Kodierung und Startpopulation.- 6.3 Fitnessfunktion.- 6.4 Selektion.- 6.5 Rekombination und Reparaturmechanismen.- 6.6 Mutation.- 6.7 Weitere Aspekte.- 6.8 Evolutionäre Algorithmen zur Optimierung von Flugrouten.- 7 Klassifizierung evolutionärer Algorithmen.- 7.1 Evolutionsstrategien.- 7.2 Evolutionäre Programmierung.- 7.3 Genetische Programmierung.- 7.4 Weitere evolutionäre Algorithmen.- 7.5 Parallele und hybride Ansätze.- 7.6 Lernende Classifier Systeme.- 8 Testumgebungen.- 8.1 Aufbau einer Testumgebung.- 8.2 Funktionen.- 8.3 Kombinatorische Optimierungsprobleme.- 8.4 Strategieentwicklung.- 9 Fuzzy-Systeme.- 9.1 Grundprinzipien.- 9.2 Fuzzy-Mengen.- 9.3 Fuzzy-Regler.- 9.4 Fuzzy-Klassifikatoren.- 9.5 Fuzzy-Clusteranalyse.- 10 Kombinationen evolutionärer Algorithmen mit Fuzzy-Systemen.- 10.1 Fuzzy-Regler-Optimierung: Ein ausführliches Beispiel.- 10.2Optimierung von Fuzzy-Systemen mit evolutionären Algorithmen.- 10.3 Fuzzy-Clustering mit evolutionären Algorithmen.- 10.4 Steuerung evolutionärer Algorithmen mit Fuzzy-Regeln.- A Anhang: Biologische Evolution und evolutionäre Algorithmen.- A.1 Die biologische Evolution.- A. 2 Terminolgie der evolutionären Algorithmen.- B Anhang: NP-Vollständigkeit.

最近チェックした商品