Neuronale Netze : Grundlagen und Anwendungen (Computational Intelligence) (1997. x, 249 S. X, 249 S. 244 mm)

個数:

Neuronale Netze : Grundlagen und Anwendungen (Computational Intelligence) (1997. x, 249 S. X, 249 S. 244 mm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 259 p.
  • 言語 GER
  • 商品コード 9783528054656
  • DDC分類 600

Full Description

Neuronale Netze sind in den letzten Jahren Gegenstand intensiver Forschungen gewesen. Dieses Buch verbindet die Darstellung neuester Ergebnisse aus dem Bereich der Lernverfahren mit anwendungsbezogenen Aspekten. Es werden methodische Prinzipien der Erstellung von Softwaresystemen, die auf konnektionistischen Verfahren basieren, herausgearbeitet. Fallbeispiele aus unterschiedlichen Anwendungsdomanen zeigen die vielfaltigen Einsatzmoglichkeiten fur Neuronale Netze.

Contents

1 Einführung.- 1.1 Was ist ein neuronales Netz?.- 1.2 Eigenschaften neuronaler Netze.- 1.3 Zur Historie.- 1.4 Problemklassen.- 1.5 Das Forschungsgebiet neuronale Netze.- 1.6 Buchüberblick.- 1.7 Einige ausgewählte Lehrbücher.- 1.8 Fragen zu Kapitel 1.- 2 Mustererkennung.- 2.1 Einführung.- 2.2 Entscheidungsgrenzen.- 2.3 Klassifikationstechniken.- 2.4 Fragen zu Kapitel 2.- 3 Biologische Grundlagen.- 3.1 Die Nervenzelle.- 3.2 Erregung von Nerven.- 3.3 Synaptische Übertragung.- 3.4 Physiologie kleiner Nervenverbände.- 3.5 Zusammenfassung.- 3.6 Fragen zu Kapitel 3.- 4 Grundlagen neuronaler Netze.- 4.1 Die "building blocks".- 4.2 Das Neuron.- 4.3 Der Netzwerkgraph.- 4.4 Die Lernregel.- 4.5 Datenräume.- 4.6 Zusammenfassung.- 4.7 Fragen zu Kapitel 4.- 5 Das Perzeptron.- 5.1 Einführung.- 5.2 Das Perzeptron-Lernverfahren.- 5.3 Lineare Separierbarkeit.- 5.4 Zusammenfassung.- 5.5 Fragen zu Kapitel 5.- 6 Überwachtes Lernen.- 6.1 Einführung.- 6.2 Backpropagation.- 6.3 Erweiterungen zu Backpropagation.- 6.4 Quickprop.- 6.5 Resilient Propagation.- 6.6 Verfahren zur Minimierung von Netzen.- 6.7 Zusammenfassung.- 6.8 Fragen zu Kapitel 6.- 7 Kohonen-Netze.- 7.1 Einleitung.- 7.2 Kohonens Modell.- 7.3 Betrachtungen zur Konvergenz.- 7.4 Zusammenfassung.- 7.5 Fragen zu Kapitel 7.- 8 ART-Netze.- 8.1 ART-1-Netze.- 8.2 Weitere ART-Netze.- 8.3 Zusammenfassung.- 8.4 Fragen zu Kapitel 8.- 9 Hopfield-Netze.- 9.1 Einführung.- 9.2 Das Hopfield-Modell.- 9.3 Lernen und Abrufen von Informationen.- 9.4 Ergänzendes zu Hopfield-Netzen.- 9.5 Zusammenfassung.- 9.6 Fragen zu Kapitel 9.- 10 Die Boltzmann-Maschine.- 10.1 Einführung.- 10.2 Die stochastische Erweiterung.- 10.3 Das Lernverfahren.- 10.4 Zusammenfassung.- 10.5 Fragen zu Kapitel 10.- 11 Cascade-Correlation-Netze.- 11.1 Einführung.-11.2 Das Verfahren.- 11.3 Zusammenfassung.- 11.4 Fragen zu Kapitel 11.- 12 Counterpropagation.- 12.1 Einführung.- 12.2 Aufbau eines Counterpropagation-Netzes.- 12.3 Die Kohonen-Schicht.- 12.4 Die Grossberg-Schicht.- 12.5 Zusammenfassung.- 12.6 Fragen zu Kapitel 12.- 13 Probabilistische Neuronale Netze.- 13.1 Einführung.- 13.2 Bayes' sche Klassifikatoren.- 13.3 Die Architektur von PNN.- 13.4 Zusammenfassung.- 13.5 Fragen zu Kapitel 13.- 14 Radiale Basisfunktionsnetze.- 14.1 Einführung.- 14.2 Aufbau eines RBF-Netzes.- 14.3 Training von RBF-Netzen.- 14.4 Zusammenfassung.- 14.5 Fragen zu Kapitel 14.- 15 Neuronale Netze und Fuzzy-Logik.- 15.1 Einführung.- 15.2 Grundlagen der Fuzzy-Logik.- 15.3 Neuro-Fuzzy-Systeme.- 15.4 Zusammenfassung.- 15.5 Fragen zu Kapitel 15.- 16 Neuronale Netze und genetische Algorithmen.- 16.1 Grundlagen evolutionärer Prozesse.- 16.2 Genetische Algorithmen.- 16.3 Neuro-genetische Verfahren.- 16.4 Zusammenfassung.- 16.5 Fragen zur Kapitel 16.- 17 Entwicklung neuronaler Systeme.- 17.1 Ein Phasenmodell für neuronale Systeme.- 17.2 Datenmodellierung.- 17.3 Erstellen des Klassifikators.- 17.4 Performanz von Klassifikatoren.- 17.5 Testen des Klassifikators.- 17.6 Optimieren von Klassifikatoren.- 17.6 Zusammenfassung.- 17.7 Fragen zu Kapitel 17.- 18 Anwendungsbeispiele.- 18.1 Finanzwirtschaft.- 18.2 Computerunterstütze Fertigung.- 18.3 Qualitätssicherung.- 18.4 Produktionsplanung.- 19 Literaturverzeichnis.- 20 Index.

最近チェックした商品