大気放射学入門<br>Atmospheric Radiation : A Primer with Illustrative Solutions (Wiley Series in Atmospheric Physics and Remote Sensing .) (2014. 256 S. w. 150 figs. 24 cm)

個数:

大気放射学入門
Atmospheric Radiation : A Primer with Illustrative Solutions (Wiley Series in Atmospheric Physics and Remote Sensing .) (2014. 256 S. w. 150 figs. 24 cm)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 250 p.
  • 商品コード 9783527410989

Full Description

This textbook is a first-look at radiative transfer in planetary atmospheres with a particular focus on the Earth's atmosphere and climate. It covers the basics of the radiative transfer of sunlight, treating absorption and scattering, and the transfer of the thermal infrared. The examples included show how the solutions of the radiative transfer equation are used to evaluate changes in the Earth?s energy budget due to changes in atmospheric composition, how these changes lead to climate change, and also how remote sensing can be used to probe the thermal structure and composition of planetary atmospheres. The examples motivate students by leading them to a better understanding of and appreciation for the computer-generated numerical results.
Aimed at upper-division undergraduates and beginning graduate students in physics and atmospheric sciences, the book is designed to cover the essence of the material in a 10-week course, while the material in the optional sections will facilitate its use at the more leisurely pace and in-depth focus of a semester course.

Contents

Preface ix

1 The Earth's Energy Budget and Climate Change 1

1.1 Introduction 1

1.2 Radiative Heating of the Atmosphere 2

1.3 Global Energy Budget 3

1.4 The Window-Gray Approximation and the Greenhouse Effect 6

1.5 Climate Sensitivity and Climate Feedbacks 8

1.6 Radiative Time Constant 12

1.7 Composition of the Earth's Atmosphere 14

1.8 Radiation and the Earth's Mean Temperature Profile 19

1.9 The Spatial Distribution of Radiative Heating and Circulation 32

1.10 Summary and Outlook 35

References 39

2 Radiation and Its Sources 41

2.1 Light as an Electromagnetic Wave 41

2.2 Radiation from an Oscillating Dipole, Radiance, and Radiative Flux 42

2.3 Radiometry 47

2.4 Blackbody Radiation: Light as a Photon 50

2.5 Incident Sunlight 57

References 63

3 Transfer of Radiation in the Earth's Atmosphere 65

3.1 Cross Sections 65

3.2 Scattering Cross Section and Scattering Phase Function 68

3.3 Elementary Principles of Light Scattering 71

3.4 Equation of Radiative Transfer 77

3.5 Radiative Transfer Equations for Solar and Terrestrial Radiation 80

References 82

4 Solutions to the Equation of Radiative Transfer 85

4.1 Introduction 85

4.2 Formal Solution to the Equation of Radiative Transfer 86

4.3 Solution for Thermal Emission 88

4.4 Infrared Fluxes and Heating Rates 93

4.5 Formal Solution for Scattering and Absorption 102

4.6 Single Scattering Approximation 103

4.7 Fourier Decomposition of the Radiative Transfer Equation 110

4.8 The Legendre Series Representation and the Eddington Approximation 112

4.9 Adding Layers in the Eddington Approximation 121

4.10 Adding a Surface with a Nonzero Albedo in the Eddington Approximation 123

4.11 Clouds in the Thermal Infrared 124

4.12 Optional Separation of Direct and Diffuse Radiances 126

4.13 Optional Separating the Diffusely Scattered Light from the Direct Beam in the Eddington and Two-Stream Approximations 127

4.14 Optional The δ-Eddington Approximation 130

4.15 Optional The Discrete Ordinate Method and DISORT 135

4.16 Optional Adding-Doubling Method 138

4.17 Optional Monte Carlo Simulations 140

References 146

5 Treatment of Molecular Absorption in the Atmosphere 149

5.1 Spectrally Averaged Transmissions 149

5.2 Molecular Absorption Spectra 151

5.3 Positions and Strengths of Absorption Lines within Vibration-Rotation Bands 155

5.4 Shapes of Absorption Lines 159

5.5 Doppler Broadening and the Voigt Line Shape 162

5.6 Average Absorptivity for a Single, Weak Absorption Line 163

5.7 Average Absorptivity for a Single, Strong, Pressure-Broadened Absorption Line 164

5.8 Treatment of Inhomogeneous Atmospheric Paths 166

5.9 Average Transmissivities for Bands of Nonoverlapping Absorption Lines 169

5.10 Approximate Treatments of Average Transmissivities for Overlapping Lines 171

5.11 Exponential Sum-Fit and Correlated k-Distribution Methods 177

5.12 Treatment of Overlapping Molecular Absorption Bands 182

References 184

6 Absorption of Solar Radiation by the Earth's Atmosphere and Surface 185

6.1 Introduction 185

6.2 Absorption of UV and Visible Sunlight by Ozone 186

6.3 Absorption of Sunlight by Water Vapor 191

References 201

7 Simplified Estimates of Emission 203

7.1 Introduction 203

7.2 Emission in the 15 μmBandofCO2 203

7.3 Change in Emitted Flux due to Doubling of CO2 209

7.4 Changes in Stratospheric Emission and Temperature Caused by a Doubling of CO2 213

7.5 Afterthoughts 215

References 217

Appendix A Useful Physical and Geophysical Constants 219

Appendix B Solving Differential Equations 221

B. 1 Simple Integration 221

B. 2 Integration Factor 221

B. 3 Second Order Differential Equations 223

Appendix C Integrals of the Planck Function 225

Appendix D Random Model Summations of Absorption Line Parameters for the Infrared Bands of Carbon Dioxide 227

Reference 229

Appendix E Ultraviolet and Visible Absorption Cross Sections of Ozone 231

References 231

Index 233

最近チェックした商品