Machine Learning and Big Data-enabled Biotechnology (Advanced Biotechnology) (1. Auflage. 2026. 432 S. 19 Tabellen. 244 mm)

個数:
  • 予約

Machine Learning and Big Data-enabled Biotechnology (Advanced Biotechnology) (1. Auflage. 2026. 432 S. 19 Tabellen. 244 mm)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 商品コード 9783527354740

Full Description

Enables researchers and engineers to gain insights into the capabilities of machine learning approaches to power applications in their fields

Machine Learning and Big Data-enabled Biotechnology discusses how machine learning and big data can be used in biotechnology for a wide breadth of topics, providing tools essential to support efforts in process control, reactor performance evaluation, and research target identification.

Topics explored in Machine Learning and Big Data-enabled Biotechnology include:

Deep learning approaches for synthetic biology part design and automated approaches for GSM development from DNA sequences
De novo protein structure and design tools, pathway discovery and retrobiosynthesis, enzyme functional classifications, and proteomics machine learning approaches
Metabolomics big data approaches, metabolic production, strain engineering, flux design, and use of generative AI and natural language processing for cell models
Automated function and learning in biofoundries and strain designs
Machine learning predictions of phenotype and bioreactor performance

Machine Learning and Big Data-enabled Biotechnology earns a well-deserved spot on the bookshelves of reaction, process, catalytic, and environmental engineers seeking to explore the vast opportunities presented by rapidly developing technologies.

Contents

Part I -
From DNA?
1 Deep learning approaches for synthetic biology part design
2 Automated approaches for GSM development from DNA sequence
3 Predictive models from genome sequences
Part II - ?.to Proteins?
4 De novo protein structure and design tools
5 Machine learning approaches for protein engineering
6 Pathway discovery /
Retrobiosynthesis
7 Enzyme functional classifications
8 Proteomics machine learning approaches and de novo identification
Part III - ?to whole cells and beyond
9 Machine learning approaches for gene expression
10 Metabolomics big data approaches
11 Use of Generative AI and natural language processing for cell models
12 Metabolic production, strain engineering, and flux design
13 Automated function and learning in biofoundries/strain designs
14 Machine learning predictions of phenotype and bioreactor performance

最近チェックした商品