Chalcogenide Nanophotonics (1. Auflage. 2026. 368 S. 6 Farbabb., 5 Tabellen. 244 mm)

個数:
  • 予約
  • ポイントキャンペーン

Chalcogenide Nanophotonics (1. Auflage. 2026. 368 S. 6 Farbabb., 5 Tabellen. 244 mm)

  • ウェブストア価格 ¥41,608(本体¥37,826)
  • WILEY-VCH(2026/03発売)
  • 外貨定価 EUR 159.00
  • クリスマスポイント2倍キャンペーン(~12/25)
  • ポイント 756pt
  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 384 p.
  • 言語 ENG
  • 商品コード 9783527352944

Full Description

Comprehensive summary of chalcogenide nanophotonics, reviewing basic principles, synthesis methods, and cutting-edge applications

Chalcogenide Nanophotonics offers an in-depth exploration of these remarkable materials, covering their fundamental physics, synthesis methods, optical phenomena, and cutting-edge applications in modern photonics. A distinctive feature of this book is its interdisciplinary approach, weaving together materials science, condensed matter physics, and photonic engineering.

Each chapter integrates theoretical frameworks with practical case studies—such as phase-change memory devices leveraging GeSbTe alloys or GST-based metasurfaces for dynamic color displays—to illustrate the symbiotic relationship between material design and device performance. The inclusion of recent breakthroughs, such as van der Waals epitaxy for low-defect heterostructures and UV lithography for scalable metasurfaces, ensures relevance to both academic and industrial audiences.

Chalcogenide Nanophotonics includes information on:

Electronic band structure and material properties, elucidating how chemical bonding and lattice dynamics govern their optoelectronic behavior
Intricate mechanisms of thin-film growth, offering insights into epitaxial techniques such as chemical vapor deposition and pulsed laser deposition
Properties of chalcogenides, covering dielectric functions, Raman spectroscopy, and emission mechanisms
Chalcogenide-based photonic crystals and metamaterials, showcasing their potential for beam steering, perfect absorption, and chiral light manipulation
Future challenges and opportunities, from machine learning-driven material discovery to monolithic 3D integration for quantum photonics

Chalcogenide Nanophotonics serves as both a roadmap and an invitation to researchers, engineers, and students alike, encouraging them to harness the infinite potential of chalcogenides.

Contents

Preface xi

1 Introduction 1

1.1 Definition of Chalcogenide Semiconductors 1

1.1.1 Basic Definition of Chalcogenide Semiconductors 1

1.1.2 Classification of Chalcogenides 3

1.2 Basic Properties of Chalcogenide Semiconductors 5

1.2.1 Chemical Properties 5

1.2.2 Physical Properties 5

1.2.3 Optical Properties 6

1.2.4 Optical Force 9

1.3 Application of Chalcogenide Semiconductors 10

1.3.1 Optical Communication 10

1.3.2 Optical Storage 11

1.3.3 Sensing Technology 12

1.3.4 Other Applications 14

1.4 Research Progress of Chalcogenide Semiconductors 15

2 Fundamentals of Chalcogenide Semiconductors 17

2.1 Theory of Electronic Band Structure 17

2.1.1 Band Theory 18

2.1.1.1 Free Electron Gas Model 19

2.1.1.2 Bloch's Theorem 21

2.1.2 Nearly-free Electron Model 24

2.1.2.1 Degenerate Perturbation Theory 26

2.1.2.2 k Not Quite on a Zone Boundary 27

2.1.3 Tight-binding Model in One Dimension 29

2.1.4 Nanoelectronics: Superlattices and Heterostructures 31

2.2 Basic Material Properties 33

2.2.1 Structure Properties 33

2.2.1.1 Crystallinity and Phase Structure 33

2.2.1.2 Surface Morphology and Roughness 34

2.2.1.3 Phase Composition and Structural Units 34

2.2.1.4 Structural Stability and Environmental Durability 34

2.2.2 Electrical Properties 36

2.2.2.1 Density of States 36

2.2.2.2 Temperature Dependence of the d.c. Conductivity 37

2.2.2.3 Drift Mobility and Photoconduction 38

2.2.3 Optical Absorption 40

2.2.4 Other Measurements 43

2.2.4.1 Thermal Conductivity and Specific Heat 43

2.2.4.2 Photoemission and Density of States 44

2.3 Synthesis and Characterization of Chalcogenide Film 44

2.3.1 Synthesis of Chalcogenide Film 45

2.3.1.1 Chemical Vapor Deposition 45

2.3.1.2 Thermal Evaporation 48

2.3.1.3 Pulsed Laser Deposition 49

2.3.1.4 Sputtering 49

2.3.2 Structural and Compositional Characterization 50

2.3.2.1 Structural Characterization 51

2.3.2.2 Component Characterization 57

2.3.2.3 Optical Characterization 60

2.3.2.4 Other Photon-detecting Techniques 64

3 Growth of Chalcogenide Films: Mechanisms and Strategies 67

3.1 Chemical Vapor Deposition 70

3.1.1 Principle and Process 70

3.1.2 Applications in Chalcogenide Films 71

3.1.3 Advantages and Disadvantages 73

3.2 Thermal Evaporation 74

3.2.1 Principle and Process 74

3.3 Vacuum Chamber 75

3.4 Pumping System 76

3.5 Substrate 76

3.6 Source 76

3.7 Filament 77

3.8 Voltage Supply 77

3.9 Quartz Crystal 77

3.9.1 Applications in Chalcogenide Films 77

3.9.2 Advantages and Disadvantages 79

3.10 Pulsed Laser Deposition 80

3.10.1 Principle and Process 80

3.10.1.1 Laser Beam 81

3.10.1.2 Focusing Lens 82

3.10.1.3 Rotor 82

3.10.1.4 Source and Substrate 82

3.10.1.5 Pumping System 83

3.10.2 Applications in Chalcogenide Films 83

3.10.3 Advantages and Disadvantages 83

3.11 Sputtering 85

3.11.1 Principle and Process 85

3.11.1.1 Vacuum Chamber 88

3.11.1.2 Substrate and Cathode 88

3.11.1.3 Reactive Gas 88

3.11.1.4 Magnets 88

3.11.1.5 RF Generator 89

3.11.2 Applications in Chalcogenide Films 89

3.11.3 Advantages and Disadvantages 93

4 Optical Properties 95

4.1 Macroscopic Electrodynamics 95

4.1.1 Overview of Electrodynamics in Chalcogenides 96

4.1.2 Application of DFT in the Field of Chalcogenides 100

4.2 The Dielectric Function 112

4.2.1 Measurement Techniques: Ellipsometry and Reflectance 113

4.2.2 Spectroscopic Ellipsometry for Dielectric Function Analysis 116

4.2.3 Optical Bandgap of Chalcogenide Semiconductors 119

4.3 Raman Spectroscopies 121

4.3.1 Principles of Raman Scattering 121

4.3.2 Raman Spectroscopy in Chalcogenide Semiconductors 123

4.3.3 Applications of Raman Spectroscopy in Nanophotonics 127

4.4 Emission Spectroscopies 129

4.4.1 Optical Emission Mechanisms in Chalcogenides 129

4.4.2 Photoluminescence and Electroluminescence 131

4.4.3 Quantum Efficiency 137

4.5 Light Scattering Spectroscopies 140

4.5.1 Light Scattering Principles and Techniques 141

4.5.2 Application of Light Scattering in chalcogenide nanomaterials 145

5 Chalcogenide Compounds for Optical Communications 147

5.1 Introduction 147

5.2 Optical Characters of Chalcogenide Glasses 153

5.2.1 Linear Refractive Index 153

5.2.2 Infrared Transmission Characteristics 158

5.2.3 Photosensitivity Characteristics 166

5.2.4 Nonlinear Characteristic 172

5.3 Preparation Process of Sulfur System Glass Fiber 179

5.3.1 Purification of the Sulfur-series Glass Material 179

5.3.2 Several Methods for the Preparation of Sulfur Glass Fiber 179

5.4 Application 186

5.4.1 Sensing 186

5.4.2 Nonlinear Effects and All-light Treatment 189

6 Integrated Optics and On-Chip Photonic Devices of Sulfide Compounds 195

6.1 Introduction 195

6.2 Chalcogenide Photonic Memory 196

6.2.1 Design of Chalcogenide-Based Photonic Memory 198

6.2.2 Design of Photon Memory Based on Sulfide Compounds 199

6.2.3 Practical Application Cases 207

6.3 Chalcogenide Color Pixels and Displays 212

6.3.1 Working Principle of Color Pixel Display 212

6.3.2 Practical Application Cases 214

6.4 ChalcogenideWaveguide 219

6.4.1 Theoretical Basis for the Characteristics of Chalcogenides and Waveguides 219

6.4.2 Application of Chalcogenides inWaveguides 219

6.5 Discussion 229

7 Chalcogenide Photonic Crystals 231

7.1 Introduction 231

7.2 Chalcogenide PC Platform 232

7.2.1 Introduction to PCs 233

7.2.1.1 Classification of PCs 233

7.2.1.2 Basic Principle of PCs 236

7.2.2 Characteristics of Chalcogenide PCs 240

7.2.2.1 Characteristics of Chalcogenide Materials 240

7.2.2.2 Advantages of Chalcogenide PCs 241

7.2.3 Preparation Process of the Chalcogenide PC Platform 243

7.2.3.1 Preparation Process of One-Dimensional Chalcogenide PC Platforms 243

7.2.3.2 Preparation Process of Two-Dimensional Chalcogenide PC Platforms 243

7.2.3.3 Preparation Process of Three-Dimensional Chalcogenide PC Platforms 244

7.3 Applications 246

7.3.1 Chalcogenide PCFs 246

7.3.2 Chalcogenide PC Cavity 249

7.3.3 Chalcogenide PCWs 252

7.3.4 Chalcogenide Topological PCs 258

7.4 Discussions 260

8 Chalcogenide Metamaterials 263

8.1 Introduction 263

8.2 Chalcogenide Metamaterials Platform 264

8.3 Applications 268

8.3.1 Chalcogenide Optical Switches 268

8.3.2 Chalcogenide Perfect Absorbers 272

8.3.3 Chalcogenide Beam Steering 276

8.3.3.1 Generalized Laws of Reflection and Refraction 277

8.3.3.2 Classification of Chalcogenide Beam Control 278

8.3.4 Chalcogenide Metalens 284

8.3.4.1 Basics of Metalens 284

8.3.4.2 Chalcogenide Metalens 285

8.3.5 Chalcogenide Chiral and Non-chiral Metamaterials 288

8.3.5.1 Chirality 288

8.3.5.2 Applications of Chalcogenide Chiral Metamaterials 288

8.3.5.3 Applications of Chalcogenide Non-chiral Metamaterials 298

8.3.6 Chalcogenide Polarization Converter 303

8.3.7 Chalcogenide Optical Tweezers 306

8.3.7.1 Optical Tweezers 306

8.3.7.2 Chalcogenide Optical Tweezers 308

8.4 Discussions 309

9 Perspectives 311

9.1 Future of Chalcogenide Nanophotonics 311

9.1.1 Advanced Materials for Next-Generation Photonic Devices 311

9.1.2 Chalcogenides in Quantum and Nonlinear Photonics 312

9.1.2.1 Nonlinear Optical Response 312

9.1.2.2 Quantum Photonics 313

9.1.2.3 Challenges in Fabrication and Device Design 313

9.1.3 Integration with Silicon Photonics 313

9.1.3.1 Material Compatibility 313

9.1.3.2 Interface Quality and Device Integration 313

9.1.3.3 Scalability and Fabrication Techniques 314

9.1.3.4 Applications and Future Directions 314

9.2 Challenges in Chalcogenide Nanophotonics 314

9.2.1 Material Quality 314

9.2.1.1 Thin Film Uniformity and Reproducibility 314

9.2.1.2 Defect Control and Optical Loss 315

9.2.1.3 Challenges in Scalable Fabrication 315

9.2.2 Challenges in Micro- and Nanofabrication 315

9.2.2.1 High-Resolution Patterning Techniques 315

9.2.2.2 Process Compatibility and Integration 315

9.2.2.3 Exploration of Novel Processing Methods 316

9.2.3 Thermal Stability 316

9.2.3.1 Optimization of Material Stability 316

9.2.3.2 Thermally Induced Phase Transition Control 316

9.2.3.3 Packaging and Interface Stability 316

9.2.4 Advances in Modulation Mechanisms 316

9.2.4.1 Electric Field Modulation 317

9.2.4.2 Optical and Thermal Control 317

9.2.4.3 Mechanical and Strain Engineering 317

9.3 Conclusion and Outlook 317

9.3.1 Material Optimization and Intelligent Design 318

9.3.2 Advanced Fabrication Processes and Nanoscale Device Integration 318

9.3.3 AI-Driven Adaptive Photonic Systems 319

9.3.4 Expanding Chalcogenide Photonic Technologies for Future Applications 320

9.3.5 The Future of Chalcogenide Nanophotonics 320

References 323

Index 341

最近チェックした商品